If harmonic mean of `(1)/(2),(1)/(2^(2)),(1)/(2^(3)),...,(1)/(2^(10))` is `(lambda)/(2^(10)-1)`, then `lambda=`
A
`10.2^(10)`
B
`5`
C
`5.2^(10)`
D
`10`
Text Solution
Verified by Experts
The correct Answer is:
B
`(b)` Given quantities are `(1)/(2),(1)/(2^(2)),(1)/(2^(3)),…,(1)/(2^(10))` ,brgt `H.M.=(10)/(2+2^(2)+2^(3)+...+2^(10))` `=(10)/((2(2^(10)-1))/(2-1))=(5)/(2^(10)-1)` `:.lambda=5`
If A=[(2,3),(5,-2)] be such that lambdaA^(-1) = A , then lambda is
Consider the quantities such that x_(1),x_(2),….x_(10),-1 lex_(1),x_(2)….,x_(10)le 1 and x_(1)^(3)+x_(2)^(3)+…+x_(10)^(3)=0 , then the maximum value of x_(1)+x_(2)+….+x_(10) is
If A = ((cosx,sinx),(-sinx, cosx)) and A (adj A) = lambda ((1,0),(0,1)) then lambda is
If the rank of the matrix [(lambda,-1,0),(0, lambda,-1),(-1,0,lambda)] is 2, then find lambda .
If A=[(3,1,2),(1,2,3)] ,B= [(1,0),(2,1),(1,1)] find AB and BA.
The sum up to 10 terms of the series (3 xx 1^(3))/(1^(2)) + (5 xx (1^(3) + 2^(3)))/(1^(2) + 2^(2)) + (7 xx (1^(3) + 2^(3) + 3^(3)))/(1^(2) + 2^(2) + 3^(2)) + ....
1^(2) + 2^(2) + 3^(2) + …+ 10^(2) is :
If lambda = -2, determine the value of |(0,2lambda,1),(lambda^(2),0,3lambda^(2)+1),(-1,6lambda-1,0)| .
CENGAGE-PROGRESSION AND SERIES-ARCHIVES (MATRIX MATCH TYPE )