Home
Class 12
MATHS
If (1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c...

If `(1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c)`, then

A

`a,b,c` are in `A.P.`

B

`a,(b)/(2),c` are in `A.P.`

C

`a,(b)/(2),c` are in `H.P.`

D

`a,2b,c` are in `H.P.`

Text Solution

Verified by Experts

The correct Answer is:
A, D

`(a,d)` `(1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c)`
`implies(1)/(a)+(1)/(a-2b)+(1)/(c )+(1)/(c-2b)=0`
`implies((1)/(a)+(1)/(c-2b))+((1)/(a-2b)+(1)/(c ))=0`
`implies(a+c-2b)((1)/(a(c-2b))+(1)/(c(a-2b)))=0`
Either, `a+c-2b=0`
`impliesa,b,c` are in `A.P.` or `(1)/(a(c-2b))+(1)/(c(a-2b))=0`
`impliesac-2bc+ac-2ab=0`
`implies2ac=2b(a+c)`
`impliesb=(ac)/(a+c)impliesa,2b,c` are in `H.P`.
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Examples|120 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.1|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Comprehension|7 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Let a , b , c ne three distinct non-zero real numbers satisfying the system of equation (1)/(a)+(1)/(a-1)+(1)/(a-2)=1 , (1)/(b)+(1)/(b-1)+(1)/(b-2)=1 , (1)/(c )+(1)/(c-1)+(1)/(c-2)=1 . Then abc=

If (a_1)/( a_2) =(b_1)/( b_2) = (C_1) /( c_2) where a_1x +b_1y +c_1=0 and a_2x +b_2y +c_2 =0, then the given pair of linear equation has …………… solutions

Let A,B,C be 3 events such that P(A//B)=(1)/(5) , P(B)=(1)/(2) , P(A//C)=(2)/(7) and P(C )=(1)/(2) , then P(B//A) is

If |a^2b^2c^2(a+1)^2(b+1)^2(c+1)^2(a-1)^2(b-1)^2(c-1)^2|=k(a-b)(b-c)(c-a), then find the value of kdot

If |(a^2,b^2,c^2),((a+b)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a) then the value of k is a. 4 b. -2 c.-4 d. 2

If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x is equal to [a , b , in (0,1)] (a) (a-b)/(1+a b) (b) b/(1+a b) (c) b/(1+a b) (d) (a+b)/(1-a b)

If (a_(1))/(a_(2))=(b_(1))/(b_(2))cancel(=)(c_(1))/(c_(2)) where a_(1)x + b_(1) y + c_(1) = 0 and a_(2) x + b_(2) y + c_(2)= 0 then the given pair of linear equation has "____________" solution (s) .

If a(1/b + 1/c), b(1/c + 1/a), c(1/a + 1/b) are in A.P., prove that a, b, c, are in A.P.