The sum of the series `1+(9)/(4)+(36)/(9)+(100)/(16)+…` infinite terms is
A
`446`
B
`746`
C
`546`
D
`846`
Text Solution
Verified by Experts
The correct Answer is:
A
`(a)` The given series can be written as `1^(3)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)` `t_(n)=(1^(3)+2^(3)+3^(3)+.....n^(3))/(1+3+5+...+(2n-1))` `=(n^(2)(n+1)^(2))/(4n^(2))=((n+1)^(2))/(4)` `=(1)/(4)(n^(2)+2n+1)` `:.S_(n)=(1)/(4)[sum_(k=1)^(n)k^(2)+2sum_(k=1)^(n)k+n]` `:.S_(n)=(1)/(4)[(n(n+1)(2n+1))/(6)+n(n+1)+n]` `:.S_(16)=(1)/(4)[(16.17.33)/(6)+16.17+16]` `=(1)/(4)[88xx17+16xx17+16]=446`