The coefficient of `x^(1274)` in the expansion of `(x+1)(x-2)^(2)(x+3)^(3)(x-4)^(4)…(x+49)^(49)(x-50)^(50)` is
A
`1275`
B
`-1275`
C
`-sum_(i=1)^(50)i^(2)`
D
`-sum_(i=1)^(50)i^(2)`
Text Solution
Verified by Experts
The correct Answer is:
B
`(b)` `(x+1)(x-2)^(2)(x+3)^(3)(x-4)^(4)...(x+49)^(49)(x-50)^(50)` Degree of the expression is `1+2+3+…+50=1275` Coefficient of `x^(1274)` is `(1-2-2+3+3+3-4-4-4-4…)` `=1^(2)-2^(2)+3^(2)-4^(2)+…+49^(2)-50^(2)` `=-(1+2+3+..+50)` `=-1275`