The value of Sigma_(i=1)^(n) Sigma_(j=1)^(i) underset(k=1)overset(j) =220, then the value of n equals
Find the value of underset(r = 1)overset(10)sum underset(s = 1)overset(10)sum tan^(-1) ((r)/(s))
If x_1, x_2, .. x_18 are observations sach the underset(j =1)overset(18)sum(x_j-8)= 9 and underset(j =1)overset(18)sum(x_j-8)^2 = 45 , then the standard deviation. of these observations is:
The number of positive zeros of the polynomial underset(j=0)overset(n)(Sigma)^n C_r(-1)^r x^r is
The IUPAC name of overset(3)CH_(3)-underset(CH_(2)CH_(3))underset(|)(overset(2)CH)-overset(1)CHO
Suppose A_1,A_2….. A_(30) are thirty sets each having 5 elements and B_1B_2…..B_n are n sets each having 3 elements ,Let overset(30)underset(i=1)bigcupA_1=overset(n)underset(j=1)bigcupB_j=s and each element of S belongs to exactly 10 of the A_1 and exactly 9 of the value of n.
Prove that underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1 .
Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))
CENGAGE-PROGRESSION AND SERIES-ARCHIVES (MATRIX MATCH TYPE )