Home
Class 12
MATHS
The value of underset(i=1)overset(n)Sigm...

The value of `underset(i=1)overset(n)Sigmaunderset(j=1)overset(i)Sigmaunderset(k=1)overset(j)` =220, then the value of n equals

A

`11`

B

`12`

C

`10`

D

`9`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `sum_(i=1)^(n)sum_(j=1)^(i)sum_(k=1)^(j)1`
`=sum_(i=1)^(n)sum_(j=1)^(i)j`
`=sum_(i=1)^(n)(i(i+1))/(2)`
`=(1)/(2)sum_(i=1)^(n)(i^(2)+i)`
`=(n(n+1)(n+2))/(6)=220`
`:.n=10`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

The value of Sigma_(i=1)^(n) Sigma_(j=1)^(i) underset(k=1)overset(j) =220, then the value of n equals

Find the value of underset(r = 1)overset(10)sum underset(s = 1)overset(10)sum tan^(-1) ((r)/(s))

If x_1, x_2, .. x_18 are observations sach the underset(j =1)overset(18)sum(x_j-8)= 9 and underset(j =1)overset(18)sum(x_j-8)^2 = 45 , then the standard deviation. of these observations is:

The number of positive zeros of the polynomial underset(j=0)overset(n)(Sigma)^n C_r(-1)^r x^r is

The IUPAC name of overset(3)CH_(3)-underset(CH_(2)CH_(3))underset(|)(overset(2)CH)-overset(1)CHO

Suppose A_1,A_2….. A_(30) are thirty sets each having 5 elements and B_1B_2…..B_n are n sets each having 3 elements ,Let overset(30)underset(i=1)bigcupA_1=overset(n)underset(j=1)bigcupB_j=s and each element of S belongs to exactly 10 of the A_1 and exactly 9 of the value of n.

Prove that underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1 .

Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))