Home
Class 12
MATHS
The sum sum(k=1)^(10)underset(i lt j lt ...

The sum `sum_(k=1)^(10)underset(i lt j lt k)underset(j=1)(sum^(10))sum_(i=1)^(10)1` is equal to

A

`120`

B

`240`

C

`360`

D

`720`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `sum_(k=1)^(10)underset(i lt j lt k)(sum_(j=1)^(10))sum_(i=1)^(10)1`
`=(1)/(6)sum_(k=1)^(10)underset(i ne j ne k)(sum_(j=1)^(10))sum_(i=1)^(10)1`
As in `sum_(k=1)^(10)underset(i lt j lt k)(sum_(j=1)^(10))sum_(i=1)^(10)1` , we have sum of terms for `i lt j lt k`,` i lt k lt j`,
`j lt i lt k`, `j lt i lt k`, `k lt i lt j`, ` k lt j lt i` and sum for each inequality is same
`:.sum_(k=1)^(10)underset(i lt j lt k)(sum_(j=1)^(10))sum_(i=1)^(10)1`
`=(1)/(6)sum_(k=1)^(10)underset(i ne j ne k)(sum_(j=1)^(10))sum_(i=1)^(10)1`
`=(720)/(6)`
`=120`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

The sum sum_(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum_(i=1)^(10)1 is equal to

int_(0)^(100pi)(sum_(r=1)^(10)tanrx)dx is equal to

The sum sum_(k=1)^(20) k (1)/(2^(k)) is equal to

Find the sum sum_(j=1)^(10)sum_(i=1)^(10)ixx2^(j)

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (where |a| gt 1 )

Let S_(1)=underset(0 le i lt j le 100)(sumsum)C_(i)C_(j) , S_(2)=underset(0 le j lt i le 100)(sumsum)C_(i)C_(j) and S_(3)=underset(0 le i = j le 100)(sumsum)C_(i)C_(j) where C_(r ) represents cofficient of x^(r ) in the binomial expansion of (1+x)^(100) If S_(1)+S_(2)+S_(3)=a^(b) where a , b in N , then the least value of (a+b) is

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(r-1)) is equal to

Find sum_(k=1)^(n)(1)/(k(k+1)) .