Home
Class 12
MATHS
If S(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...

If `S_(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!)`, then `S_(50)=`

A

`52!`

B

`1+49xx5!`

C

`52!-1`

D

`50xx51!-1`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `T_(n)=(n^(2)-n+1)n!`
`=(n^(2)-1)n!-(n-2)n!`
`T_(n)=(n-1)(n+1)!-(n-2)n!`
`:. S_(n)=1+(n-1)(n+1)!`
`:.S_(30)=1+49xx51!`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

If S_(n) = (.^(n)C_(0))^(2) + (.^(n)C_(1))^(2) + (.^(n)C_(n))^(n) , then maximum value of [(S_(n+1))/(S_(n))] is "_____" . (where [*] denotes the greatest integer function)

If n(A)=2,P(A)=(1)/(5) , then n(S)=?

lim_(nto oo)((1^(2))/(1-n^(3))+(2^(2))/(1-n^(3))+ . . . .+(n^(2))/(1-n^(3)))=

Show that (1 xx 2^(2) + 2 xx 3^(2) + ... +n xx (n + 1)^(2))/(1^(2) xx 2 + 2^(2) xx 3+ ... + n^(2) xx (n + 1)) = (3n + 5)/(3n + 1)

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (n !)/((n-1)!(n+1)!) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((2n-1)!(2n+1)!) d. none of these

If (1^2-t_1)+(2^2-t_2)+….+(n^2-t_n)=(n(n^2-1))/(3) then t_n is equal to

lim_(xto oo)((1)/(1-n^(2))+(2)/(1-n^(2))+ . . .+(n)/(1-n^(2))) is

The absolute value of the sum of first 20 terms of series, if S_(n)=(n+1)/(2) and (T_(n-1))/(T_(n))=(1)/(n^(2))-1 , where n is odd, given S_(n) and T_(n) denotes sum of first n terms and n^(th) terms of the series

Prove that 1^(2)+2^(2)+3^(2)+.....+n^(2)=(n(n+1)(2n+1))/6

If S_n=[1/(1+sqrt(n))+1/(2+sqrt(2n))+....+1/(n+sqrt(n^2))] then (lim)_(n ->oo)S_n is equal to (A) log 2 (B) log4 (C) log8 (D) none of these