Home
Class 12
MATHS
The value of "^(1000)C(50)+^(999)C(49)+^...

The value of `"^(1000)C_(50)+^(999)C_(49)+^(998)C_(48)+......+^(950)C_(0)` is

A

`"^(1001)C_(50)`

B

`"^(1002)C_(951)-^(1001)C_(51)`

C

`"^(1001)C_(951)`

D

`"^(1002)C_(51)-^(1001)C_(95)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

`(a,b,c,d)` `'^(1000)C_(50)+^(999)C_(40)+^(998)C_(48)+....+^(950)C_(0)`
`="coefficient of" x^(950) "in" {(1+x)^(950)+(1+x)^(951)+…+(1+x)^(1000)}`
`="coefficient of" x^(950) "in" (1+x)^(950){1+(1+x)+(1+x)^(2)+….+(1+x)^(50)}`
`="coefficient of" x^(950) "in" (1+x)^(950) ({(1+x)^(51)-1})/(1+x-1)`
`="coefficient of" x^(950) "in" ((1+x)^(1001)-(1+x)^(950))/(x)`
`=^(1000)C_(951)=^(1001)C_(50)=^(1002)C_(951)-^(1001)C_(51)=^(1002)C_(51)-^(1001)C_(950)`, Since `'^(n)C_(r )+^(n)C_(r-1)=^((n+1))C_(r )`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Single correct Answer|62 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

The value of .^(40)C_(0) xx .^(100)C_(40) - .^(40)C_(1) xx .^(99)C_(40) + .^(40)C_(2) xx .^(98)C_(40) "……." + .^(40)C_(40) xx .^(60)C_(40) is equal to "____" .

The value of "^(12)C_(2)+^(13)C_(3)+^(14)C_(4)+...+^(999)C_(989) is

The value of sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r) is

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

""^(15)C_(0)=

The value of ""^(50)C_(4)+sum_(r=1)^(6)""^(56-r)C_(3) is

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to