Home
Class 12
MATHS
if determinant |{:( cos (0 + phi),,-sin ...

if determinant `|{:( cos (0 + phi),,-sin (0+phi),,cos 2phi),(sin 0,,cos 0,,sin phi),(-cos 0,,sin0,,cos phi):}|` is

A

independent of `theta` for all `lambda in R`

B

independent of `theta` and `alpha` when `lambda=1`

C

independent of `theta` and `alpha` when `lambda=-1`

D

independent of `lambda` for all `theta`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`(a,c)` `|{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sintheta,costheta,sinalpha),(-costheta,sintheta,lambdacosalpha):}|`
`=(1)/(sinalphacosalpha)|{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sinthetasinalpha,costhetasinalpha,sin^(2)alpha),(-costhetacosalpha,sinthetacosalpha,lambdacos^(2)alpha):}|`
[Multiplying `R_(2)` and `R_(3)` by `sin alpha ` and `cos alpha`, respectively]
`=(1)/(sinalphacosalpha)xx|{:(0,0,cos2alpha+sin^(2)alpha+lambdacos^(2)alpha),(sinthetasinalpha,costhetasinalpha,sin^(2)alpha),(-costhetacosalpha,sinthetacosalpha,lambdacos^(2)alpha):}|`
[Applying `R_(1)toR_(1)+R_(2)+R_(3)`]
`=(cos2alpha+sin^(2)alpha+lambdacos^(2)alpha)/(sinalpha*cosalpha)|{:(sinthetasinalpha,costhetasinalpha),(-costhetacosalpha,sintheta cosalpha):}|`
`=(cos^(2)alpha+lambdacos^(2)alpha)|{:(sintheta,costheta),(-costheta,sintheta):}|=(1+lambda)cos^(2)alpha`
Therefore, the given determinants is independent of `theta` for all real values of `lambda`.
Also , `lambda=-1`, then it is independent of `theta` and `alpha`.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

if determinant |{:( cos (theta + phi),,-sin (theta+phi),,cos 2phi),(sin theta,,cos theta,,sin phi),(-cos theta,,sintheta,,cos phi):}| is

" if " f(0) = |{:(sin 0 ,,cos 0,,sin 0),(cos0,,sin0,,cos0),(cos0,, sin 0,,sin 0):}| then

sin 2x + cos x =0

" If "|{:(sin theta cos phi,,sin theta sin phi,,cos theta),(cos theta cos phi,, cos theta sin phi,,-sin theta),(-sin theta sin phi,,sin theta cos phi,,theta):}| then

Find |A| , if A =[{:( 0 , sin alpha , cos alpha),(sin alpha , 0 , sin beta),(cos alpha , -sin beta , 0):}]

Prove that |(1,x,1),(0,cos x, sin y),(0 , sin x, cos y )|=cos (x+y)

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

Evaluate {:[( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) ]:} =0

"Evaluate "Delta ={:[( 0 , sin alpha ,-cos alpha ) ,( -sin alpha , 0 , sin beta ),( cos alpha , -sin beta , 0)]:}