Home
Class 12
MATHS
Let An be the area bounded by the curve ...

Let `A_n` be the area bounded by the curve `y=(tanx)^n` and the lines `x=0,y=0,` and `x=pi/4dot` Prove that for `n >2,A_n+A_(n-2)=1/(n-1)` and deduce `1/(2n+2)

Text Solution

Verified by Experts

`"We have "A_(n)=int_(0)^(pi//4)(tan x)^(n) dx`

`"Since "0lt tna x lt 1," when "0 lt x lt pi//4,` we have
`0lt (tan x)^(n+1) lt (tan x)^(n)" for each "n in N`
`rArr" "int_(0)^(pi//4)(tan x)^(n+1) dx lt int_(0)^(pi//4) (tan x)^(n) dx`
`rArr" "A_(n+1)ltA_(n)`
`"Now, for "ngt2`,
`A_(n)+A_(n+2)=int_(0)^(pi//4)[(tan x)^(n)+(tan x)^(n+2)]dx`
`=int_(0)^(pi//4)(tan x)^(n)(1+ tan^(2)x) dx`
`=int_(0)^(pi//4)(tan x)^(n) (sec^(2)x) dx`
`=[(1)/((n+1))(tan x)^(n+1)]_(0)^(pi//4)`
`[because int [f(x)]^(n)f'(x)dx=([f(x)]^(n+1))/(n+1)]`
`=(1)/((n+1))(1-0)`
`"Since "A_(n+2)ltA_(n+1)ltA_(n),` we get
`A_(n)+A_(n+2)lt2A_(n)`
`rArr" "(1)/(n+1)lt2A_(n)rArr(1)/(2n+2)ltA_(n)" (1)"`
`"Also for "ngt2, A_(n)+A_(n)ltA_(n)+A_(n-2)=(1)/(n-1)`
`"or "2A_(n)lt(1)/(n-1)`
`"or "A_(n)lt(1)/(2n-2)" (2)"`
`"Combining (1) and (2), we get "(1)/(2n+2)ltA_(n)lt(1)/(2n-2).`
Promotional Banner

Topper's Solved these Questions

  • AREA

    CENGAGE|Exercise Exercise 9.1|9 Videos
  • AREA

    CENGAGE|Exercise Exercise 9.2|14 Videos
  • APPLICATIONS OF DERIVATIVES

    CENGAGE|Exercise Subjective Type|2 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos

Similar Questions

Explore conceptually related problems

Sketch the region bounded by the curves y=x^2a n dy=2/(1+x^2) . Find the area.

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot

If A_(n) is the area bounded by y=x and y=x^(n), n in N, then A_(2).A_(3)…A_(n)=

Prove that (1 + i)^(n) + (1 - i)^(n) = 2^((n + 2)/(2)) cos (n pi)/(4)

Find the value of n in N such that the curve (x/a)^n+(y/b)^n=2 touches the straight line x/a+y/b=2 at the point (a , b)dot

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

If x and y are positive real numbers and m, n are any positive integers, then Prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt =1/4

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If alphaa n dbeta are the rootsof he equations x^2-a x+b=0a n dA_n=alpha^n+beta^n , then which of the following is true? a. A_(n+1)=a A_n+b A_(n-1) b. A_(n+1)=b A_(n-1)+a A_n c. A_(n+1)=a A_n-b A_(n-1) d. A_(n+1)=b A_(n-1)-a A_n