If G is the centroid of triangle with vertices `A(a,0),B(-1,0)` and `C(b,c)` then `(AB^(2)+BC^(2)+CA^(2))/(GA^(2)+GB^(2)+GC^(2))=`
A
1
B
2
C
3
D
4
Text Solution
Verified by Experts
The correct Answer is:
C
Vertices are `A(a,0),B(-a,0)` and `C(b,c)` `:.` Centroid is `G((b)/(3),(c)/(3))` `(AB^(2)+BC^(2)+CA^(2))/(GA^(2)+GB^(2)+GC^(2))` `=(4a^(2)+(a+b)^(2)+c^(2)+(a-b)^(2)+c^(2))/(((b)/(3)-a)^(2)+((c)/(3))^(2)+((b)/(3)+a)^(2)+((c)/(3))^(2)+((2b)/(3))^(2)+((2c)/(3))^(2))` `=(4a^(2)+2c^(2)+2a^(2)+2b^(2))/((2b^(2))/(9)+2a^(2)+(6c^(2))/(9)+(4b^(2))/(9))=3`
Find the orthocentre of Delta A B C with vertices A(1,0),B(-2,1), and C(5,2)
If the origin is the centroid of the triangle PQR with vertices P(2a,2,6),Q(-4,3b,-10) and R(8,14,2c) , then find the values of a, b and c.
The area of the triangle whose vertices are A(1,-1,2),B(2,1-1)C(3,-1,2) is …….
If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC)=vec(0) .
Consider the triangle ABC with vertices A(1,2,3) , B(-1, 0, 4) and C(0, 1, 2) (a) Find vec (AB) and vec (AC) Find angle A . (c) Find the area of triangle ABC.
Consider the triangle whose vertices are (-1,0),(5,-2) and (8,2). Find the centroid of the triangle.
The vertices of Delta ABC are A(2,4) B(-4, 2) and C(0,0). Find the slopes of AC and AB.
CENGAGE-COORDINATE SYSTEM-Multiple Correct Answers Type