`P(cosalpha,sinalpha), Q(cosbeta, sinbeta) , R(cosgamma, singamma)` are vertices of triangle whose orthocenter is `(0, 0)` then the value of `cos(alpha-beta) + cos(beta-gamma) + cos(gamma-alpha)` is
A
`-3//2`
B
`-1//2`
C
`½`
D
`3//2`
Text Solution
Verified by Experts
The correct Answer is:
A
Clearly `OP = OQ = OR`, where O is orthocentre `:. O(0,0)` is the circum centre of `DeltaPQR`. Also, given orthocenter `= (0,0)` Thus, orthocentre and circumcentre coincide, So, triangle is equilateral `:.` Centroid of `DeltaPQR = (0,0)` `rArr cos alpha +cos beta +cos gamma =0`, and `sin alpha + sin beta+ sin gamma = 0` Squaring and adding we get `cos(alpha-beta) +cos (beta-gamma) +cos (gamma- alpha) =-(3)/(2)`
If alpha,beta,gamma are the roots of the equation x^3+4x+1=0, then find the value of (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1) .
Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .
Let alpha, beta, gamma be the measures of angle such that sin alpha+sin beta+sin gamma ge 2 . Then the possible value of cos alpha + cos beta+cos gamma is
If alpha, beta, gamma are the cube roots of a negative number p, then for any three real numbers x,y,z the value of (x alpha+y beta+ z gamma)/(x beta +y gamma+z alpha) is
The points A(0,0),B(cosalpha,sinalpha) and C(cosbeta,sinbeta) are the vertices of a right-angled triangle if (a) sin((alpha-beta)/2)=1/(sqrt(2)) (b) cos((alpha-beta)/2)=-1/(sqrt(2)) (c) cos((alpha-beta)/2)=1/(sqrt(2)) (d) sin((alpha-beta)/2)=-1/(sqrt(2))
If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is
Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)
If a = cos 2alpha + i sin 2 alpha, b = cos 2 beta + i sin 2 beta and c = cos 2gamma + i sin 2 gamma . Prove that . sqrt(abc) + 1/(sqrt(abc)) = 2 cos (alpha + beta + gamma)
If a =cos alpha - i sin alpha, b= cos beta - i sin beta, c = cos gamma - i sin gamma , then ((a^2c^2 - b^2)/(abc)) is …………..
If alpha < beta < gamma and sin gamma cos alpha=1, where alpha,gamma in[pi,2 pi], then the least integral value of f(x) = | x - alpha| + | x - beta| + |x - gamma| is
CENGAGE-COORDINATE SYSTEM-Multiple Correct Answers Type