The line passing through `(-1,pi/2)` and perpendicular to `sqrt3 sin(theta) + 2 cos (theta) = 4/r` is
A
`2 = sqrt(3)r cos theta - 2r sin theta`
B
`5 =- 2sqrt(3)r sin theta +4r cos theta`
C
`2 = sqrt(3)r cos theta +2r cos theta`
D
`5 = 2 sqrt(3)r sin theta +4r cos theta`
Text Solution
Verified by Experts
The correct Answer is:
A
Perpendicular to `sqrt(3) sin theta +2 cos theta = (4)/(r)` is `sqrt(3) sin ((pi)/(2) +theta) +2 cos ((pi)/(2)+theta) = (k)/(r )` It is passing through `(-1,pi//2)` `:. sqrt(3) sin pi +2 cos pi =(k)/(-1) rArr k = 2` `:. sqrt(3) cos theta - 2 sin theta = (2)/(r) rArr 2 = sqrt(3)r cos theta - 2r sin theta = 2`.
What is the equation of the plane which passes through the z-axis and is perpendicular to the line (x-a)/(cos theta) = (y+2)/(sin theta) = (z-3)/0 ? (A) x+y tan theta=0 (B) y+x tan theta=0 (C) x cos theta-y sin theta=0 (D) x sin theta-y cos theta=0
The equation of a straight line which passes through the point ( a cos^(3)theta, a sin^(3)theta ) and perpendicular to x sec theta + y cosec theta = a
Solve sin^(2) theta-2 cos theta+1/4=0
Solve the equations: sin theta + sqrt(3) cos theta = 1