Home
Class 12
MATHS
If (x^(2))/(36)-(y^(2))/(k^(2))=1 is a h...

If `(x^(2))/(36)-(y^(2))/(k^(2))=1` is a hyperbola, then which of the following points lie on hyperbola?

A

`(3,1)`

B

`(-3,1)`

C

`(5,2)`

D

`(10,4)`

Text Solution

Verified by Experts

The correct Answer is:
D

For hyperbola `(x^(2))/(36) -(y^(2))/(k^(2)) =1, a = 6`
`:.` Abscissa of any point on hyperbola must be `ge 6`
`:. (10,4)` can lie on hyperbola
Promotional Banner

Similar Questions

Explore conceptually related problems

If the chords of contact of tangents from two points (-4,2) and (2,1) to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 are at right angle, then find then find the eccentricity of the hyperbola.

If the angle between the asymptotes of hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 id (pi)/(3) , then the eccentnricity of conjugate hyperbola is _________.

The tangent at P on the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2))=1 meets one of the asymptote in Q. Then the locus of the mid-point of PQ is

Consider the hyperbola (X^(2))/(9)-(y^(2))/(a^(2))=1 and the circle x^(2)+(y-3)=9 . Also, the given hyperbola and the ellipse (x^(2))/(41)+(y^(2))/(16)=1 are orthogonal to each other. The number of points on the hyperbola and the circle from which tangents drawn to the circle and the hyperbola, respectively, are perpendicular to each other is

Consider the hyperbola (X^(2))/(9)-(y^(2))/(a^(2))=1 and the circle x^(2)+(y-3)=9 . Also, the given hyperbola and the ellipse (x^(2))/(41)+(y^(2))/(16)=1 are orthogonal to each other. Combined equation of pair of common tangents between the hyperbola and the circle is given be

P is a point on the hyperbola (x^(2))/(y^(2))-(y^(2))/(b^(2))=1 , and N is the foot of the perpendicular from P on the transverse axis. The tantent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

The points on the ellipse (x^(2))/(2)+(y^(2))/(10)=1 from which perpendicular tangents can be drawn to the hyperbola (x^(2))/(5)-(y^(2))/(1) =1 is/are

A tangent is drawn at any point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2)) =1 . If this tangent is intersected by the tangents at the vertices at points P and Q, then which of the following is/are true

Statement 1 : If from any point P(x_1, y_1) on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1, then the corresponding chord of contact lies on an other branch of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 Statement 2 : From any point outside the hyperbola, two tangents can be drawn to the hyperbola.

The equation (x^2)/(12 - k) + (y^2)/(8 - k) = 1 represents a hyperbola whose transverse axis is along the x axis if