Home
Class 12
MATHS
If e and e' are the eccentricities of th...

If `e and e'` are the eccentricities of the hyperbola `x^2/a^2-y^2/b^2=1 and y^2/b^2-x^2/a^2=1,` then the point `(1/e,1/(e'))` lies on the circle (A) `x^2+y^2=1` (B) `x^2+y^2=2` (C) `x^2+y^2=3` (D) `x^2+y^2=4`

A

`x^(2)+y^(2)=1`

B

`x^(2)+y^(2)=2`

C

`x^(2)+y^(2)=3`

D

`x^(2)+y^(2)=4`

Text Solution

Verified by Experts

The correct Answer is:
A

For `(x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1, e^(2) =1 + (b^(2))/(a^(2)) = (a^(2)+b^(2))/(a^(2))` ltrgt For `(y^(2))/(b^(2)) -(x^(2))/(a^(2)) =1, (e')^(2) =1 + (a^(2))/(b^(2)) =(b^(2)+a^(2))/(b^(2))`
`rArr (1)/(e^(2)) + (1)/((e')^(2))`
`= (a^(2))/(a^(2)+b^(2)) + (b^(2))/(b^(2)+a^(2))`
`= (a^(2)+b^(2))/(a^(2)+b^(2)) =1`
So the point `((1)/(e),(1)/(e))` lie on `x^(2) + y^(2) =1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If e is the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and theta is the angle between the asymptotes, then cos.(theta)/(2) is equal to

The eccentricity of the hyperbola |sqrt((x-3)^2+(y-2)^2)-sqrt((x+1)^2+(y+1)^2)|=1 is ______

If a x+b y=1 is tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , then a^2-b^2 is equal to 1/(a^2e^2) (b) a^2e^2 b^2e^2 (d) none of these

The equation of the circle passing through the point of intersection of the circles x^2+y^2-4x-2y=8 and x^2+y^2-2x-4y=8 and the point (-1,4) is (a) x^2+y^2+4x+4y-8=0 (b) x^2+y^2-3x+4y+8=0 (c) x^2+y^2+x+y=0 (d) x^2+y^2-3x-3y-8=0

For the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 and (x^(2))/(b^(2))+(y^(2))/(a^(2)) =1

The eccentricity of the conjugate hyperbola of the hyperbola x^2-3y^2=1 is 2 (b) 2sqrt(3) (c) 4 (d) 4/5

If points Aa n dB are (1, 0) and (0, 1), respectively, and point C is on the circle x^2+y^2=1 , then the locus of the orthocentre of triangle A B C is (a) x^2+y^2=4 (b) x^2+y^2-x-y=0 (c) x^2+y^2-2x-2y+1=0 (d) x^2+y^2+2x-2y+1=0

Show that the acute angle between the asymptotes of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1,(a^2> b^2), is 2cos^(-1)(1/e), where e is the eccentricity of the hyperbola.