Home
Class 12
MATHS
The length of the transverse axis of the...

The length of the transverse axis of the hyperbola `9x^(2)-16y^(2)-18x -32y - 151 = 0` is

A

8

B

2

C

6

D

2

Text Solution

Verified by Experts

The correct Answer is:
A

Given hyperbola is `= ((x-1)^(2))/(16)-((y+1)^(2))/(9) =1`
Length of the transverse axis is `2a = 8`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The vertices of the hyperbola 9x^2 - 16y^2 = 144

Find the vertices, foci for the hyperbola 9x^(2)-16y^(2)=144 .

Find the vertices, foci for the hyperbola 9x^(2)-16y^(2)=144.

The length of the transverse axis of the rectangular hyperbola x y=18 is 6 (b) 12 (c) 18 (d) 9

Find the vertices of the hyperbola 9x^2-16 y^2-36 x+96 y-252=0

Find the eccentricity, centre, foci and vertices of the hyperbola 9x^(2)-16y^(2)-18x-64y-199=0 .

The equation of the transvers axis of the hyperbola (x-3)^2+(y=1)^2+(4x+3y)^2 is x+3y=0 (b) 4x+3y=9 3x-4y=13 (d) 4x+3y=0

Find the centre, foci and eccentricity of the hyperbola 12x^(2)-4y^(2)-24x+32y-127=0

If any line perpendicular to the transverse axis cuts the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 and the conjugate hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 at points Pa n dQ , respectively, then prove that normal at Pa n dQ meet on the x-axis.