Home
Class 12
MATHS
For the hyperbola xy = 8 any tangent of ...

For the hyperbola `xy = 8` any tangent of it at P meets co-ordinates at Q and R then area of triangle CQR where 'C' is centre of the hyperbola is

A

16 sq. units

B

12 sq. units

C

24 sq. units

D

18 sq. units

Text Solution

Verified by Experts

The correct Answer is:
A

Any point of `xy = 8` is `P(sqrt(8)t,(sqrt(8))/(t))`
`:.` Equation of the tangent at P is `(x)/((16t)/(sqrt(8))) + (y)/((16)/(sqrt(8)t)) =1`
`:.` Area of the triangle `=(!)/(2).(16t)/(sqrt(8)). (16)/(sqrt(8)t) =16`
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a hyperbola xy = 4 and a line y = 2x = 4 . O is the centre of hyperbola. Tangent at any point P of hyperbola intersect the coordinate axes at A and B. Shortest distance between the line and hyperbola is

A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it forms a triangle OPQ, where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PQ is

Prove that product of parameters of four concyclic points on the hyperbola xy=c^(2) is 1. Also, prove that the mean of these four concyclic points bisects the distance between the centres of the hyperbola and the circle.

If the normal at a point P to the hyperbola meets the transverse axis at G, and the value of SG/SP is 6, then the eccentricity of the hyperbola is (where S is focus of the hyperbola)

N is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transverse axis at T. If O is the center of the hyperbola the OT.ON is equal to:

Let 'p' be the perpendicular distance from the centre C of the hyperbola x^2/a^2-y^2/b^2=1 to the tangent drawn at a point R on the hyperbola. If S & S' are the two foci of the hyperbola, then show that (RS + RS')^2 = 4 a^2(1+b^2/p^2) .

A point P moves such that the sum of the slopes of the normals drawn from it to the hyperbola xy = 16 is equal to the sum of ordinates of feet of normals . The locus of P is a curve C. The area of the equilateral triangle inscribed in the curve C having one vertex as the vertex of curve C is

A curve C has the property that if the tangent drawn at any point P on C meets the co-ordinate axis at A and B , then P is the mid-point of A Bdot The curve passes through the point (1,1). Determine the equation of the curve.

P is a point on the hyperbola (x^(2))/(y^(2))-(y^(2))/(b^(2))=1 , and N is the foot of the perpendicular from P on the transverse axis. The tantent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

If P Q is a double ordinate of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 such that O P Q is an equilateral triangle, O being the center of the hyperbola, then find the range of the eccentricity e of the hyperbola.