Home
Class 12
MATHS
If a chord joining P(a sec theta, a tan ...

If a chord joining `P(a sec theta, a tan theta), Q(a sec alpha, a tan alpha)` on the hyperbola `x^(2)-y^(2) =a^(2)` is the normal at P, then `tan alpha =`

A

`tan theta (4 sec^(2) theta+1)`

B

`tan theta (4 sec^(2) theta -1)`

C

`tan theta (2 sec^(2) theta -1)`

D

`tan theta (1-2 sec^(2) theta)`

Text Solution

Verified by Experts

The correct Answer is:
B

Slope of chord joining P and Q = slope of normal at P
`:. (tan alpha - tan theta)/(sec alpha - sec theta) =- (tan theta)/(sec theta)`
`:. tan alpha - tan alpha =- k tan theta` and `sec alpha - sec theta = k sec theta (1+k) sec theta = sec alpha` (1)
`:. (1-k) tan theta = tan alpha` (2)
`[(1+k)sec theta]^(2) - [(1-k)tan theta]^(2) = sec^(2) alpha - tan^(2) alpha =1`
`rArr k =- 2 (sec^(2) theta + tan^(2) theta) =- 4 sec^(2) theta +2`
From (2), `tan alpha = tan theta (1+4 sec^(2) theta -2) = tan theta (4 sec^(2) theta -1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: sec theta + tan theta = 1/(sec theta - tan theta)

(sec theta+ tan theta)(sec theta-tan theta) =____.

If sec theta + tan theta = k, cos theta =

Solve sqrt(2) sec theta+tan theta=1 .

If sec theta +tan theta =p, then what is the value of sec theta -tan theta ?

Prove: (sin theta + tan theta)/(cos theta) = tan theta (1 + sec theta)

Prove: (cos theta)/(1+sin theta) = sec theta - tan theta

If cot theta = 3/2 , then tan sec theta = …….

Prove the following: (tan^3 theta - 1)/(tan theta - 1) = sec^2 theta + tan theta

If x=a sec theta and y=b tan theta then b^(2)x^(2)-a^(2)y^(2) =_____.