Home
Class 12
MATHS
If the normal at P(asectheta,btantheta) ...

If the normal at `P(asectheta,btantheta)` to the hyperbola `x^2/a^2-y^2/b^2=1` meets the transverse axis in G then minimum length of PG is

A

`(b^(2))/(a)`

B

`|(a)/(b)(a+b)|`

C

`|(a)/(b)(a-b)|`

D

`|(a)/(b)(a-b)|`

Text Solution

Verified by Experts

The correct Answer is:
A

Equation of the normal is `ax cos theta + by cot theta = a^(2) +b^(2)` The normal at P meets the coordinate axes at `G((a^(2)+b^(2))/(a)sec theta,0)`
and `g (0,(a^(2)+b^(2))/(b)tan theta)`
`:. PG^(2) = ((a^(2)+b^(2))/(a)sec theta -a sec theta)^(2)+(b tan theta -0)^(2)`
`PG^(2) =(b^(2))/(a^(2)) (b^(2) sec^(2) theta + a^(2) tan^(2) theta)`
When `tan theta =0`
`PG =(b^(2))/(a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the normal at P(theta) on the hyperbola (x^2)/(a^2)-(y^2)/(2a^2)=1 meets the transvers axis at G , then prove that A GdotA^(prime)G=a^2(e^4sec^2theta-1) , where Aa n dA ' are the vertices of the hyperbola.

If the normal at a pont P to the hyperbola x^2/a^2 - y^2/b^2 =1 meets the x-axis at G , show that the SG = eSP.S being the focus of the hyperbola.

If the normals at P(theta) and Q(pi/2+theta) to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 meet the major axis at Ga n dg, respectively, then P G^2+Qg^2= b^2(1-e^2)(2-e)^2 a^2(e^4-e^2+2) a^2(1+e^2)(2+e^2) b^2(1+e^2)(2+e^2)

If x=asectheta,y=btantheta, then the value of x^(2)/a^(2)-y^(2)/b^(2)= …….. .

If the normal at any point P on the ellipse x^2/a^2+y^2/b^2=1 meets the axes at G and g respectively, then find the raio PG:Pg= (a) a : b (b) a^2 : b^2 (c) b : a (d) b^2 : a^2

If the normal at a point P to the hyperbola meets the transverse axis at G, and the value of SG/SP is 6, then the eccentricity of the hyperbola is (where S is focus of the hyperbola)

P is a point on the hyperbola (x^(2))/(y^(2))-(y^(2))/(b^(2))=1 , and N is the foot of the perpendicular from P on the transverse axis. The tantent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

If the normal at P to the rectangular hyperbola x^2-y^2=4 meets the axes at G and ga n dC is the center of the hyperbola, then (a) P G=P C (b) Pg=P C (c) P G-Pg (d) Gg=2P C

The tangent at P on the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2))=1 meets one of the asymptote in Q. Then the locus of the mid-point of PQ is

Let P(a sectheta, btantheta) and Q(aseccphi , btanphi) (where theta+phi=pi/2 be two points on the hyperbola x^2/a^2-y^2/b^2=1 If (h, k) is the point of intersection of the normals at P and Q then k is equal to (A) (a^2+b^2)/a (B) -((a^2+b^2)/a) (C) (a^2+b^2)/b (D) -((a^2+b^2)/b)