Home
Class 12
MATHS
Consider a hyperbola xy = 4 and a line y...

Consider a hyperbola `xy = 4` and a line `y = 2x = 4`. O is the centre of hyperbola. Tangent at any point P of hyperbola intersect the coordinate axes at A and B.
Locus of circumcentre of triangle OAB is

A

an ellipse with eccentricity `(1)/(sqrt(2))`

B

an ellipse with eccentricity `(1)/(sqrt(3))`

C

a hyperbola with eccnetricity `sqrt(2)`

D

a circle

Text Solution

Verified by Experts

The correct Answer is:
C

Let `(2t,2//t)` be a point on the hyperbola. Equation of the tangent at this point `x + yt^(2) = 4t`.
`:. A = (4t,0),B = (0,4//t)`
Locus of circumcentre of triangle is `xy = 16`
Its eccentricity is `sqrt(2)`
Shortest distance exist along the common normal.
`:. t^(2) = 1//2` or `t = 1//sqrt(2)`
`:.` Foot of the perpendicular is `C (sqrt(2),2sqrt(2))`
`:.` Shortest distance is distance of C from the given line which is `(4(sqrt(2)-1))/(sqrt(5))`
Given line intersect the x-axis at `R(2,0)` Any point on this line at distance 'r' from R is `(2+r cos theta, r sin theta)` If this point lies on hyperbola, then we have `(2+r cos theta) (r sin theta) =4`
Product of roots of above quadratie in 'r' is `r_(1)r_(2) = 8//|sin 2 theta|`, which has minimum value 8
`:.` Minimum value of `RS xx RT` is 8
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a hyperbola xy = 4 and a line y = 2x = 4 . O is the centre of hyperbola. Tangent at any point P of hyperbola intersect the coordinate axes at A and B. Let the given line intersects the x-axis at R. if a line through R. intersect the hyperbolas at S and T, then minimum value of RS xx RT is

Consider a hyperbola xy = 4 and a line y = 2x = 4 . O is the centre of hyperbola. Tangent at any point P of hyperbola intersect the coordinate axes at A and B. Shortest distance between the line and hyperbola is

The tangent at any point P on the circle x^2+y^2=4 meets the coordinate axes at Aa n dB . Then find the locus of the midpoint of A Bdot

From a point P perpendicular tangents PQ and PR are drawn to ellipse x^(2)+4y^(2) =4 , then locus of circumcentre of triangle PQR is

For the hyperbola xy = 8 any tangent of it at P meets co-ordinates at Q and R then area of triangle CQR where 'C' is centre of the hyperbola is

In a hyperbola, the portion of the tangent intercepted between the asymptotes is bisected at the point of contact. Consider a hyperbola whose center is at the origin. A line x+y=2 touches this hyperbola at P(1,1) and intersects the asymptotes at A and B such that AB = 6sqrt2 units. The equation of the tangent to the hyperbola at (-1, 7//2) is

In a hyperbola, the portion of the tangent intercepted between the asymptotes is bisected at the point of contact. Consider a hyperbola whose center is at the origin. A line x+y=2 touches this hyperbola at P(1,1) and intersects the asymptotes at A and B such that AB = 6sqrt2 units. The angle subtended by AB at the center of the hyperbola is

In a hyperbola, the portion of the tangent intercepted between the asymptotes is bisected at the point of contact. Consider a hyperbola whose center is at the origin. A line x+y=2 touches this hyperbola at P(1,1) and intersects the asymptotes at A and B such that AB = 6sqrt2 units. The equation of the pair of asymptotes is

Tangents are drawn to the hyperbola 4x^2-y^2=36 at the points P and Q. If these tangents intersect at the point T(0,3) then the area (in sq units) of triangle PTQ is

Consider a curve ax^2+2hxy+by^2=1 and a point P not on the curve. A line drawn from the point P intersect the curve at points Q and R. If he product PQ.PR is (A) a pair of straight line (B) a circle (C) a parabola (D) an ellipse or hyperbola