Home
Class 12
MATHS
Consider a hyperbola xy = 4 and a line y...

Consider a hyperbola `xy = 4` and a line `y = 2x = 4`. O is the centre of hyperbola. Tangent at any point P of hyperbola intersect the coordinate axes at A and B.
Shortest distance between the line and hyperbola is

A

`(8sqrt(2))/(sqrt(5))`

B

`(4(sqrt(2)-1))/(sqrt(5))`

C

`(2sqrt(2))/(sqrt(5))`

D

`(4(sqrt(2)-1))/(sqrt(5))`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `(2t,2//t)` be a point on the hyperbola. Equation of the tangent at this point `x + yt^(2) = 4t`.
`:. A = (4t,0),B = (0,4//t)`
Locus of circumcentre of triangle is `xy = 16`
Its eccentricity is `sqrt(2)`
Shortest distance exist along the common normal.
`:. t^(2) = 1//2` or `t = 1//sqrt(2)`
`:.` Foot of the perpendicular is `C (sqrt(2),2sqrt(2))`
`:.` Shortest distance is distance of C from the given line which is `(4(sqrt(2)-1))/(sqrt(5))`
Given line intersect the x-axis at `R(2,0)` Any point on this line at distance 'r' from R is `(2+r cos theta, r sin theta)` If this point lies on hyperbola, then we have `(2+r cos theta) (r sin theta) =4`
Product of roots of above quadratie in 'r' is `r_(1)r_(2) = 8//|sin 2 theta|`, which has minimum value 8
`:.` Minimum value of `RS xx RT` is 8
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a hyperbola xy = 4 and a line y = 2x = 4 . O is the centre of hyperbola. Tangent at any point P of hyperbola intersect the coordinate axes at A and B. Locus of circumcentre of triangle OAB is

Consider a hyperbola xy = 4 and a line y = 2x = 4 . O is the centre of hyperbola. Tangent at any point P of hyperbola intersect the coordinate axes at A and B. Let the given line intersects the x-axis at R. if a line through R. intersect the hyperbolas at S and T, then minimum value of RS xx RT is

In a hyperbola, the portion of the tangent intercepted between the asymptotes is bisected at the point of contact. Consider a hyperbola whose center is at the origin. A line x+y=2 touches this hyperbola at P(1,1) and intersects the asymptotes at A and B such that AB = 6sqrt2 units. The equation of the tangent to the hyperbola at (-1, 7//2) is

For the hyperbola xy = 8 any tangent of it at P meets co-ordinates at Q and R then area of triangle CQR where 'C' is centre of the hyperbola is

Find the equation of hyperbola : whose axes are coordinate axes and the distances of one of its vertices from the foci are 3 and 1

Find the point on the hyperbola x^2/24 - y^2/18 = 1 which is nearest to the line 3x+2y+1=0 and compute the distance between the point and the line.

In a hyperbola, the portion of the tangent intercepted between the asymptotes is bisected at the point of contact. Consider a hyperbola whose center is at the origin. A line x+y=2 touches this hyperbola at P(1,1) and intersects the asymptotes at A and B such that AB = 6sqrt2 units. The angle subtended by AB at the center of the hyperbola is

In a hyperbola, the portion of the tangent intercepted between the asymptotes is bisected at the point of contact. Consider a hyperbola whose center is at the origin. A line x+y=2 touches this hyperbola at P(1,1) and intersects the asymptotes at A and B such that AB = 6sqrt2 units. The equation of the pair of asymptotes is

The vertices of Delta ABC lie on a rectangular hyperbola such that the orthocenter of the triangle is (3, 2) and the asymptotes of the rectangular hyperbola are parallel to the coordinate axes. The two perpendicular tangents of the hyperbola intersect at the point (1, 1). The equation of the rectangular hyperbola is

The vertices of Delta ABC lie on a rectangular hyperbola such that the orthocenter of the triangle is (3, 2) and the asymptotes of the rectangular hyperbola are parallel to the coordinate axes. The two perpendicular tangents of the hyperbola intersect at the point (1, 1). The equation of the pair of asymptotes is