Home
Class 12
MATHS
Find the derivative of y = ln(2x^3 − x)...

Find the derivative of `y = ln(2x^3 − x)^2`

Text Solution

Verified by Experts

The correct Answer is:
`a rarr r; b rarr p,q; c rarr q,r; d rarr p,s`

a. The radical axis of `x^(2)+y^(2)+2a_(1)x+b=0` and `x^(2)+y^(2)+2a_(2)x=b=0` is `(a_(1)-a_(2))x=0` or `x=0` . It must touch both the circles.
Solving it with one of the circles, we get
`y^(2)+b=0` or `b le 0`
b. The radical axis `x^(2)+y^(2)+2a_(1)x+b=0` and `x^(2)+y^(2)+2a_(2)y+b=0` is `a_(1)x-a_(2)y=0`
Solving it with one the circles, we have
`x^(2)=((a_(1))/(a_(2)))^(2)x^(2)+2a_(1)x+b=0`
This equation must have equal roots. Hence,
`4a_(1)^(2)-4b[1+((a_(1)^(2))/(a_(2)^(2)))]=0`
`a_(1)^(2)-b[1+(a_(1)^(2))/(a_(2)^(2))]=0`
Options p and q satisfy this condition.
c. If the straight line `a_(1)x-by+b^(2)=0` touches the circle `x^(2)+y^(2)=a_(2)x=by`, then
`(|a_(1)(a_(2))/(2)-b(b)/(2)+b^(2)|)/(sqrt(a_(1)^(2)+b^(2)))=sqrt((a_(2)^(2))/(4)+(b^(2))/(4))`
`(|a_(1)a_(2)+b^(2)|)/(sqrt(a_(1)^(2)+b^(2)))=sqrt(a_(2)^(2)+b^(2))` ltbgt or `a_(1)^(2)a_(2)^(2)+2b^(2)a_(1)a_(2)+b^(4)=a_(1)^(2)a_(2)^(2)+a_(1)^(2)b^(2)+a_(2)^(2)b^(2)+b^(4)`
i.e., `b^(2)=0` or `2a_(1)a_(2) =a_(1)^(2)+a_(2)^(2)`
Options q and r satisfy this condition.
d. The line `3x+4y-4=0` touches the circle
`(x-a_(1))^(2)+(y-a_(2))^(2)=b^(2)`. Then,
`(|3a_(1)+4a_(2)-4|)/(5)=b`
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    CENGAGE|Exercise JEE Advanced (Single Correct Answer Type)|14 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|16 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of y = ln x^2

Find the derivative of y = ln 4x

Find the derivative of y = 5 ln (2x^3 − 1).

Find the derivative of y = ln x^3

Find the derivative of y = 2 ln (3x^2 − 1)

Find the derivative of y = x ln^3 x .

Find the derivative of y = 6^(2x) .

Find the derivative of y = ln(1 − 2x)^3 .

Find the derivative of y = log 3x

Find the derivative of y = 10^(3x)