Home
Class 12
MATHS
Prove that the sum of eccentric angles ...

Prove that the sum of eccentric angles of four concylic points on the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` is `2npi,` where ` n in Z`

Text Solution

Verified by Experts

Let the circle `x^(2)+y^(2)+2gx+2fy+e-0` cut the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` in four ponts , P,Q,R and S.
Solving circle and ellipse `(x=a cos theta, y=b sin theta)`, we have `a^(2)cos^(2)theta+b^(2)theta+2agcos theta+2bf sin theta+c=0`
`rArra^(2)((1-t^(2))/(1+t))+b^(2)((2t)/(1+r^(2)))^(2)+2ag((1-r^(2))/(1+t^(2)))+2bf((2t)/(1+t))+c=0"where"t=tan.(theta)/(2)`
`rArra^(2)(1-r^(2))^(2)+4b^(2)t^(2)+2ag(1-t^(2))^(2)(1-t^(2))+4bft(1+f^(2))+c(1+r^(2))^(2)=0`
`rArr(a^(2)-2ag+c)t^(4)+4bft^(3)+(-2a^(2)+4b^(2)+2c)t^(2)+4bft+(a^(2)+2ag+c)-0`
Roots of equation are `tan.(alpha)/(2),tan.(beta)/(2),tan.(gamma)/(2) and tan. (delta)/(2)`, where `alpha,beta,gamma and delta` eccentric angles of P,Q,R and S respectively .
Now,`tan ((alpha)/(2)+(beta)/(2)+(gamma)/(2)+(delta)/(2))=(s_(1)-s_(2))/(1-s_(2)+s_(4))`
Wherem `s_(i)` = sum of products of tangents of half angles taken 'i' at a time
Clearly, from eqution (1),
`s_(1)=s_(3)=(-4bf)/(a^(2)-2ag+c)`
`tan ((alpha)/(2)+(beta)/(2)+(gamma)/(2)+(delta)/(2))=0`
`rArr(alpha+beta+gamma+delta)/(2)=npi,n in Z`
`rArr alpha+beta+gamma+delta=2npi,n in Z`
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of the focal distance of the ellipse (x^2)/(a^2) + (y^2)/(b^2) = 1 is

Find the eccentric angles of the extremities of the latus recta of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1

P and Q are two points on the ellipse (x^(2))/(a^(2)) +(y^(2))/(b^(2)) =1 whose eccentric angles are differ by 90^(@) , then

The eccentricity of ellipse (x^(2))/(25)+(y^(2))/(9)=1 is ……………. .

Prove that the chord of contact of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 with respect to any point on the directrix is a focal chord.

The locus of mid-points of a focal chord of the ellipse x^2/a^2+y^2/b^2=1

The area of the parallelogram formed by the tangents at the points whose eccentric angles are theta, theta +(pi)/(2), theta +pi, theta +(3pi)/(2) on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 is

Find the points on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 such that the tangent at each point makes equal angles with the axes.

Find the points on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 such that the tangent at each point makes equal angles with the axes.