Home
Class 12
MATHS
If omega is one of the angles between ...

If `omega` is one of the angles between the normals to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1' at the point whose eccentric angles are `theta` and `pi/2+theta` , then prove that `(2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))`

Text Solution

Verified by Experts

The equations of the normals to the ellipse `(x^(2))/(a^(2))+(y^(2))/(gb^(2))=1` at the points whose eccentric angles are `theta and (pi)/(2)+thea` are, respectively.
`ax sec theta-"by cosec"theta=a^(2)-b^(2)`
and `ax "cosec" theta-"by" sec theta=a^(2)-b^(2)`
Sicnce `omega` is the angle between these two normals, we have `tan omega|((a)/(b) tan theta+(a)/(b)cot theta)/(1-(a^(2))/(b^(2)))|`
`=|(ab(tan theta+cot theta))/(b^(2)-a^(2))|`
`=|(2ab)/((sin2theta)(b^(2)-a^(2)))|`
`=(2ab)/((a^(2)-b^(2))sin 2 theta)=(2a^(2)sqrt(1-e^(2)))/(a^(2)e^(2) sin2 theta)`
`:. (2cot omega)/(sin 2 theta)=(e^(2))/(sqrt(1-e^(2)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x/a+y/b=sqrt(2) touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then find the eccentric angle theta of point of contact.

P and Q are two points on the ellipse (x^(2))/(a^(2)) +(y^(2))/(b^(2)) =1 whose eccentric angles are differ by 90^(@) , then

If x/a+y/b=sqrt2 touches the ellipses x^2/a^2+y^2/b^2=1 , then fin the ecentric angle theta of point of contact

Prove that: (cos2theta)/(1+sin2theta)=tan(pi/4-theta)

Find the eccentric angles of the extremities of the latus recta of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1

Find the equation of tangent nad normal to the ellipse 4x^(2)+y^(2)=32 at theta=(pi)/(4) .

If cos theta+sin theta=sqrt(2)cos theta then prove that cos theta-sin theta=sqrt(2)sin theta

Find the equations of tangent and normal to the ellipse x^(2)+4y^(2)=32 when theta=(pi)/(4) .

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tantheta))^2

If (sqrt(3))b x+a y=2a b touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then the eccentric angle of the point of contact is (a) pi/6 (b) pi/4 (c) pi/3 (d) pi/2