Home
Class 12
MATHS
If (sqrt(3))b x+a y=2a b touches the ell...

If `(sqrt(3))b x+a y=2a b` touches the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` , then the eccentric angle of the point of contact is (a)`pi/6` (b) `pi/4` (c) `pi/3` (d) `pi/2`

A

`pi//6`

B

`pi//4`

C

`pi//3`

D

`pi//2`

Text Solution

Verified by Experts

The correct Answer is:
A

The equation of tanents is
`(x)/(a)(sqrt(3))/(2)+(y)/(b)(1)/(2)=1" "(1)`
and the equation of tangent at the point `(a cos phi, b sin b phi)` is `(x)/(a)cos phi+(y)/(b) sin phi=1 " "(2)`
Comparing (1) and (2), we have
`cos phi =(sqrt(3))/(2) and sin phi=(1)/(2)`
Hence, `phi=pi//6`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x/a+y/b=sqrt(2) touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then find the eccentric angle theta of point of contact.

If x/a+y/b=sqrt2 touches the ellipses x^2/a^2+y^2/b^2=1 , then fin the ecentric angle theta of point of contact

The distance of a point on the ellipse (x^2)/6+(y^2)/2=1 from the center is 2. Then the eccentric angle of the point is pi/4 (b) (3pi)/4 (c) (5pi)/6 (d) pi/6

If the area of the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 is 4pi , then find the maximum area of rectangle inscribed in the ellipse.

The angle between the tangents drawn from the point (1, 4) to the parabola y^2=4x is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

If the line l x+m y+n=0 cuts the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 at points whose eccentric angles differ by pi/2, then find the value of (a^2l^2+b^2m^2)/(n^2) .

lf the eccentricity of the hyperbola x^2-y^2(sec)alpha=5 is sqrt3 times the eccentricity of the ellipse x^2(sec)^2alpha+y^2=25, then a value of alpha is : (a) pi/6 (b) pi/4 (c) pi/3 (d) pi/2

If y=(x^4-x^2+1)/(x^2+sqrt(3)x+1)a n d(dy)/(dx)=a x+b , then the value of a+b is (a) cot(pi/8) (b) cot(pi/12) (c) tan((5pi)/12) (d) tan((5pi)/8)

The tangent at a point P on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 meets one of the directrix at Fdot If P F subtends an angle theta at the corresponding focus, then theta= pi/4 (b) pi/2 (c) (3pi)/4 (d) pi

An ellipse is sliding along the coordinate axes. If the foci of the ellipse are (1, 1) and (3, 3), then the area of the director circle of the ellipse (in square units) is (a) 2pi (b) 4pi (c) 6pi (d) 8pi