Home
Class 12
MATHS
Tangents are drawn to the ellipse (x^2)/...

Tangents are drawn to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1,(a > b),` and the circle `x^2+y^2=a^2` at the points where a common ordinate cuts them (on the same side of the x-axis). Then the greatest acute angle between these tangents is given by `tan^(-1)((a-b)/(2sqrt(a b)))` (b) `tan^(-1)((a+b)/(2sqrt(a b)))` `tan^(-1)((2a b)/(sqrt(a-b)))` (d) `tan^(-1)((2a b)/(sqrt(a+b)))`

A

`tan^(-1)((a-b)/(2sqrt(ab)))`

B

`tan^(-1)((a+b)/(2sqrt(ab)))`

C

`tan^(-1)((2ab)/(2sqrt(a-b)))`

D

`tan^(-1)((2ab)/(2sqrt(a+b)))`

Text Solution

Verified by Experts


Tanent to the ellipse at `P( a cos alpha, b sin alpha)` is `(x)/(a) cos alpha+(y)/(b) isn alpha=1" "(1)`
Tangent to the circle at `Q(a cos, alpha, a sin alpha)` is ` cos ax+sin alphay=a " "(2)`
Now, the angle between the tangents is `theta`. Then, `tan theta=|(-(b)/(a)cotalpha-(-cot alpha))/(1+(-(b)/(a)cot alpha)(-cot alpha))|`
`=|(cos alpha(1-(b)/(a)))/(1+(b)/(a)cot^(2)alpha)|=|(a-b)/(a tan alpha+b cot alpha)|`
`=|(a-b)/((sqrt(atanalpha)-sqrt(bcotalpha))^(2)+2sqrt(ab))|`
Now, the greatest value of the above expression is `|(a-b)/(2sqrt(ab))|` when `sqrt(tan alpha)= sqrt (b tan alpha)`. Therefore,
`theta_("maximum")=tan^(-1)((a-b)/(2sqrt(ab)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Tangents are drawn to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1,(a > b), and the circle x^2+y^2=a^2 at the points where a common ordinate cuts them (on the same side of the x-axis). Then the greatest acute angle between these tangents is given by (A) tan^(-1)((a-b)/(2sqrt(a b))) (B) tan^(-1)((a+b)/(2sqrt(a b))) (C) tan^(-1)((2a b)/(sqrt(a-b))) (D) tan^(-1)((2a b)/(sqrt(a+b)))

For the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 and (x^(2))/(b^(2))+(y^(2))/(a^(2)) =1

If x/a+y/b=sqrt(2) touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then find the eccentric angle theta of point of contact.

If a tangent of slope 2 of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 is normal to the circle x^2+y^2+4x+1=0 , then the maximum value of a b is 4 (b) 2 (c) 1 (d) none of these

Tangents are drawn to the ellipse from the point ((a^2)/(sqrt(a^2-b^2)),sqrt(a^2+b^2))) . Prove that the tangents intercept on the ordinate through the nearer focus a distance equal to the major axis.

If x/a+y/b=sqrt2 touches the ellipses x^2/a^2+y^2/b^2=1 , then fin the ecentric angle theta of point of contact

If the ellipse x^2/a^2+y^2/b^2=1 (b > a) and the parabola y^2 = 4ax cut at right angles, then eccentricity of the ellipse is

If a tangent to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 makes intercepts h and k on the co-ordinate axes then show that a^(2)/h^(2)+b^(2)/k^(2)=1 .

A tangent is drawn to the ellipse to cut the ellipse x^2/a^2+y^2/b^2=1 and to cut the ellipse x^2/c^2+y^2/d^2=1 at the points P and Q. If the tangents are at right angles, then the value of (a^2/c^2)+(b^2/d^2) is