Home
Class 12
MATHS
If a normal to the ellipse (x^(2))/(a^(...

If a normal to the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` is `4-3y=7` and its ecentricity is `(sqrt(7))/(4)` , then the volume of L.R can be

A

a) `(9)/(sqrt(2))`

B

b) `(9)/(2)`

C

c) `(8sqrt(337))/(19)`

D

d) `(3sqrt(337))/(8)`

Text Solution

Verified by Experts

Equation of the normal at `(a co theta, b sin theta)` is `ax sec theta-"by cosec" theta=a^(2)-b^(2)`
Comapring with `4x-3y=7` we, get
`(a sec theta)/(4)=(b "cosec" theta)/(3)=(a^(2)-b^(2))/(7)" "(1)`
For`agtb`,
`b^(2)a^(2)(1-e^(2))`
`:. b=(3a)/(4)" "(2)`
From equation (1) we get
`((a)/(4))/(costheta)=((b)/(3))/(sintheta)=sqrt((a^(2))/(16)+(b^(2))/(9))=(a^(2)-b^(2))/(7)" "(3)`
Solging (2) and (3) we get
`rArra=4sqrt(2),b=3sqrt(2)`
L.R. =`(2b^(2))/(a)=(2xx18)/(4sqrt(2))=(9)/(sqrt(2))`
For `altb`, we have,
`a^(2)=b^(2)(1-e^(2))`
`rArra=(3b)/(4)`
`rArrr-7sqrt((9)/(16xx16)b^(2)+(b^(2))/(9))=(9)/(16)b^(2)-b^(2)" "("Using"(3))`
`rArr(sqrt(337))/(6xx16),=a(sqrt(337))/(4)`
`:. b=(sqrt(337))/(3),a=(sqrt(337))/(4)`
`L.R. =(2a^(2))/(b)=(2(337)/(16))/((sqrt(337))/(3))=(sqrt(337))/(8)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line 4ax+3by=24 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (agtb) , then find the the coordinates of focii

If a tangent of slope 2 of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 is normal to the circle x^2+y^2+4x+1=0 , then the maximum value of a b is 4 (b) 2 (c) 1 (d) none of these

Find the equation of the normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at the positive end of the latus rectum.

Find the maximum distance of any normal of the ellipse x^2/a^2 + y^2/b^2=1 from its centre,

if y=mx+7sqrt(3) is normal to (x^(2))/(18)-(y^(2))/(24)=1 then the value of m can be

A normal to the hyperbola (x^2)/4-(y^2)/1=1 has equal intercepts on the positive x- and y-axis. If this normal touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then a^2+b^2 is equal to (a)5 (b) 25 (c) 16 (d) none of these

If radius of the director circle of the ellipse ((3x+4y-2)^(2))/(100)+((4x-3y+5)^(2))/(625) =1 is

If 4x+y+k=0 is a tangent to the ellipse x^(2)+3y^(2)=3 then k = ?

If x/a+y/b=sqrt2 touches the ellipses x^2/a^2+y^2/b^2=1 , then fin the ecentric angle theta of point of contact