Home
Class 12
MATHS
If A+B+C=180^0, prove that : cos^2, A/2 ...

If `A+B+C=180^0`, prove that : `cos^2, A/2 + cos^2, B/2 - cos^2, C/2 = 2cos, A/2 cos, B/2 sin, C/2`

Text Solution

Verified by Experts

(a) `LHS=cos^(2)""(A)/(2)+cos^(2)""(B)/(2)-cos^(2)""(C)/(2)`
`=cos^(2)""(A)/(2)sin^(2)""(C)/(2)sin^(2)""(B)/(2)`
`=cos^(2)""(A)/(2)+sin((C-B)/(2))sin((C+B)/(2))`
`=cos^(2)""(A)/(2)+sin((C-B)/(2))cos((A)/(2))`
`=cos((A)/(2))[sin((B+C)/(2))+sin((C-B)/(2))]`
`=2cos((A)/(2))cos((B)/(2))sin((C)/(2))`
(b) `cos^(2)""(A)/(2)+cos^(2)""(B)/(2)+cos^(2)""(C)/(2)`
`=(1+cosA)/(2)+(1+cosB)/(2)+(1+cosC)/(2)`
`=(3+cosA+cosB+cosC)/(2)`
`=(3+1+4sin""(A)/(2)sin""(B)/(2)sin""(C)/(2))/(2)`
`=2+2sin""(A)/(2)sin""(B)/(2)sin""(C)/(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.7|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If A + B + C = 180^(@) , prove that cos A + cos B - cos C = -1 + 4 cos (A)/(2) cos"" (B)/(2) sin"" (C )/(2)

cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC .

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B + sin^(2) C = 2 + 2 cos A cos B cos C

If A+B+C=pi prove that cos^(2) A+cos^(2) B+cos^(2) C=1 - 2cos A cos B cos C .

Prove that cos2A=cos^2 A -sin^2 A

If A + B + C = 180^(@) , prove that sin A + sin B + sin C = 4 cos (A)/(2) cos"" (B)/(2) cos"" (C )/(2)

If A+B+C = pi show that cos^2 (A/2)-cos^2 (B/2)-cos^2 (C/2)=-2sin(A/2)cos(B/2)cos(C/2)

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B - sin^(2)C = 2 sin A sin B cos C

Prove that sin^2 A cos^2 B+cos^2 A sin^2 B+cos^2 A cos^2 B+sin^2 A sin^2 B=1

In A B C Prove that cos^2A/2+cos^2B/2+cos^2C/2lt=9/4dot In cos^2A/2+cos^2B/2+cos^2C/2=y(x^2+1/(x^2)) then find the maximum value of ydot