Home
Class 12
MATHS
Prove that : cos^2 (beta-gamma) + cos^2 ...

Prove that : `cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta)`.

Text Solution

Verified by Experts

Let `A=beta-gamma,B=gamma-a`, and `C-pi=alpha-beta`
`rArr A+B+C=pi`
`rArr cos^(2)(beta-gamma)+cos^(2)(gamma-alpha)+cos^(2)(alpha-beta)`
`=cos^(2)A+cos^(2)B+cos^(2)C`
`=(3+(cos2A_cos 2B+cos2C))/(2)`
`=1-2cos A cos B cos C`
`=1+2 cos (beta-alpha)cos(gamma-alpha)cos(alpha-beta)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.7|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the angles of a triangle and system of equations cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0 cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0 sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0 has non-trivial solutions, then triangle is necessarily a. equilateral b. isosceles c. right angled "" d. acute angled

Let A and B denote the statements A : cos alpha + cos beta + cos gamma =0 B : sin alpha + siin beta + sin gamma = 0 If cos(beta - gamma) + cos (gamma -alpha) + cos (alpha -beta) = - (3)/(2) , then

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Consider the vectors hat i+cos(beta-alpha) hat j+cos(gamma-alpha) hat k ,cos(alpha-beta) hat i+ hat j+"cos"(gamma-beta) hat ka n dcos(alpha-gamma) hat i+cos(beta-gamma) hat k+a hat k where alpha,beta , and gamma are different angles. If these vectors are coplanar, show that a is independent of alpha,beta and gamma

If alpha,beta "and" gamma are real number without expanding at any stage prove that |{:(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma),cos(beta-gamma),1):}| =0.

If f(x)=|cos (x+alpha) , cos (x+beta) , cos (x+gamma)],[ sin (x+alpha) , sin (x+beta) ,sin (x+gamma) ],[ sin (beta-gamma), sin (gamma-alpha), sin (alpha-beta)]| and f(0)=-2 then overset(30)underset( r=1) sum |f(r)| equals

If cos (alpha - beta) + cos (beta - gamma) + cos (gamma - alpha) = (-3)/(2) then prove that cos alpha + cos beta+ cos gamma = sin alpha + sin beta + sin gamma = 0 .

If alpha, beta, gamma are three real numbers and A=[(1,cos (alpha-beta),cos(alpha-gamma)),(cos (beta-alpha),1,cos (beta-gamma)),(cos (gamma-alpha),cos (gamma-beta),1)] then which of following is/are true ?

Using properties of determinants in Exercises prove that : {:[( alpha , alpha ^(2) , beta +gamma ),( beta , beta ^(2) , gamma +alpha ),( gamma , gamma ^(2) ,alpha +beta ) ]:} =(beta -gamma ) (gamma -alpha ) (alpha -beta ) (alpha +beta +gamma )

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha