Home
Class 12
MATHS
In triangle ABC if 2sin^(2)C=2+cos2A+cos...

In `triangle ABC` if `2sin^(2)C=2+cos2A+cos2B`, then prove that triangle is right angled.

Text Solution

Verified by Experts

We have `2 sin^(2)C=2+cos2A+cos2B`
`therefore sin ^(2)A+sin^(2)B+sin^(2)C=2`
Now in `triangle ABC`,
`sin^(2)+sin^(2)B+sin^(2)C=2+2cos A cos B cos C`
`therefore sin A cos B cos C=theta`
Therefore, `triangle ABC`, must be righ angled triangle.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.7|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In triangleABC , if sqrt(3)sin C=2 sec A-tan A , then prove that triangle is right angled.

In triangle ABC , if cosA+sinA-(2)/(cosB+sinB)=0 then prove that triangle is isosceles right angled.

In a triangle ABC, sin^(2)A + sin^(2)B + sin^(2)C = 2 , then the triangle is

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceless

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.