Home
Class 12
MATHS
In triangle ABC, prove that sin""(A)/(2)...

In triangle ABC, prove that `sin""(A)/(2)sin""(B)/(2)sin""(C)/(2)le(1)/(8)` and hence, prove that `co sec ""(A)/(2)+co sec""(B)/(2)+co sec""(C)/(2)ge6`.

Text Solution

Verified by Experts

We know that is triangle ABC,
`cos A+cos B+cos Cle3//2`
Now, `cosA+cosB+cosC=1+4sin""(A)/(2)sin""(B)/(2)sin""(C)/(2)`.
`therefore 1+4sin""(4)/(2)sin""(A)/(2)sin""(B)/(2)sin""(C)/(2)le""(3)/(2)`
So, `sin""(A)/(2)(B)/(2)sin""(C)/(2)le(1)/(8)`
Using `AMgeGM`, we get
`(co sec((A)/(2))+co sec((B)/(2))+co sec((C)/(2)))/(3)ge(co sec ((A)/(2))co sec ((B)/(2))co sec((C)/(2)))^(1//3)`
`rArr co sec((A)/(2))+co sec((B)/(2))+co sec ((C)/(2))ge3((1)/(sin((A)/(2))sin((B)/(2))sin((C)/(2))))^(1//3)`
`rArr co sec((A)/(2))+co sec((B)/(2))+co sec((C)/(2))ge3(8)^(1//3)`
`rArr co sec((A)/(2))+co sec((B)/(2))+co sec((C)/(2))ge6`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Single)|100 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.9|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In a triangleABC," prove that sin" ((B-C)/(2))=(b-c)/(a) cos""A/2 .

In a Delta ABC, prove that a sin ((A)/(2) + B) = (b + c) sin ""(A)/(2)

In triangle A B C , prove that sin(A/2)+sin(B/2)+sin(C/2)lt=3/2dot Hence, deduce that cos((pi+A)/4)cos((pi+B)/4)cos((pi+C)/4)lt=1/8

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .

Prove that (sin (A-B))/(sin (A+B))=(a^(2)-b^(2))/(c^(2))

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

Prove that ( 1+ sec A)/( sec A) =(sin ^(2) A)/( 1-cos A)

In a triangleABC, prove that a cos A+b cos B+c cos C=2a sin B sin C