Home
Class 12
MATHS
Prove the following identities : 1 - (...

Prove the following identities :
`1 - (sin^(2) A)/ (1 + cos A) = cos A`

Text Solution

Verified by Experts

The correct Answer is:
`a to q; b to p; c to q; d to s`

a. `9 + 16 = 24 sin (A+B) = 37" " ` (on squaring and adding)
`24sin (A+B) = 12`
`sin (A+B) = (1)/(2) rArr sin C= (1)/(2)`
`" "C = 30^(@) or 150^(@)`
`rArr C = 30^(@)`
b. `(sinA + sin B) ^(2) - sin^(2)C = 3 sinA sin B`
or `sin^(2) A -sin ^(2) C +sin^(2)B = sinA sinB`
or `sin(A+C) sin(A-C) + sin^(2)B= sinA sinB`
or ` sin B[sin(A-C) + sin (A+C)] = sin A sinB `
or `2 sin A cos C = sinA ( as sin B ne 0)`
or ` cos C = 1//2`
or `C = 60^(@)`
c. `2 sinx cos x [ 4 cos ^(4)x - 4 sin ^(4) x ] =1 `
or ` ( sin 2x) -[2(cos^(2)x + sin ^(2)x)] [2 cos^(2)c - 2 sin^(2) x] =1`
or ` ( sin 2 x ) 2xx2 cos 2x = 1`
or ` 2 sin 4x =1 `
or ` sin 4x = (1)/(2) or 4x = 30^(@) or x = 7.5^(@)`.
d. Obviously, `AEOD` is a cyiclic quadrilateral, we have
`angle COD = 120^(@) + 45^(@) = 165^(@)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Numerical)|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise JEE Main Previous Year|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that following identities (sin^(3)A+cos^(3))/(sinA+cosA)+(sin^(3)A-cos^(3)A)/(sinA-cosA)=2

Prove the following trigonometric identities: (cosec A - sin A)(sec A - cos A)(tan A + cot A) = 1

Prove that (sin A)/(1 + cos A) + (sin A)/(1 - cos A) = 2 cosec A.

If A+B+C=pi/2 prove the following (i) sin 2A+sin 2B +sin 2C=4 cos A cos B cos C (ii) cos 2A +cos 2B+cos 2C=1+4 sin A sin B sin C.

Prove the following: (sin theta - cos theta + 1 )/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)

Prove that following identities sec^(4)theta(1-sin^(4)theta)-2tan^(2)theta=1

Prove that sin A/1+cos A = 1-cos A/sin A

Prove that ( 1+ sec A)/( sec A) =(sin ^(2) A)/( 1-cos A)

Prove that sin (n + 1) theta sin (n - 1) theta + cos (n + 1) theta cos (n - 1) theta = cos 2 theta , n in ZZ .