Home
Class 12
MATHS
The value of sum(k=1)^(13) (1)/(sin((pi)...

The value of `sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6)))` is equal to

A

` 3-sqrt3`

B

`2(3-sqrt3)`

C

`2(sqrt3-1)`

D

`2(2+sqrt3)`

Text Solution

Verified by Experts

The correct Answer is:
C

`2 overset(13) underset(k=1) (sum) (sin((pi)/(6)))/(sin ((pi/(4) + ((k-1)pi)/(6)) sin ((pi)/(4) +(kpi)/(6))))`
`" " = 2 sum (sin{((pi)/(4) + (kpi)/(6))- ((pi)/(4) + ((k-1)pi)/(6))})/(sin ((pi)/(4) + ((k-1)pi)/(6))* sin ((pi)/(4)+ (kpi)/(6)))`
`" " = 2 overset(13)underset(k=1) (sum)(cot((pi)/(4)+ ((k-1)pi)/(6)) - cot ((pi)/(4)+ (k pi)/(6)))`
`= 2[ cot ((pi)/(4)) - cot ((pi)/(4) + (13pi)/(6))]`
`= 2[1-(2-sqrt3)]`
`= 2 (sqrt3-1)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise JEE Main Previous Year|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the value of cos^(-1) ("cos" (pi)/(7) "cos" (pi)/(17)-"sin" (pi)/(7) "sin" (pi)/(17))

Find the value of sin^(-1) ("sin" (5pi)/(9) "cos"(pi)/(9) +"cos" (5pi)/(9) "sin" (pi)/(9))

Knowledge Check

  • The value of is sum_(k=1)^(10)(sin"" (2k pi)/(11)+ icos ""(2k pi)/(11)) is

    A
    `i`
    B
    `1`
    C
    `-1`
    D
    `-i`
  • sin((pi)/3-"sin"^(-1)(-1/2)) is equal to

    A
    `1/2`
    B
    `1/3`
    C
    `1/4`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    Find the value of sum_(k =1)^(8)(cos"" (2k pi)/(9) + i(sin""2k pi)/(9))

    Find the value of (I ) sin^(-1) ( sin ((2pi )/(3)) ) (ii ) sin^(-1) (sin ((5 pi )/(4)))

    Find the value of sin^(-1)(sin((5pi)/(4)))

    Find the value of sin^(-1)(sin((5pi)/(4)))

    The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

    Find the value of sin^(-1) ( sin "" (5pi)/(9 ) cos "" (pi)/(9) + cos ""(5 pi )/(9) sin ""(pi) /(9))