Home
Class 12
MATHS
The positive integer value of n >3 satis...

The positive integer value of `n >3` satisfying the equation `1/(sin(pi/n))=1/(sin((2pi)/n))+1/(sin((3pi)/n))i s`

Text Solution

Verified by Experts

The correct Answer is:
7

`(1)/(sin""(pi)/(n)) - (1)/(sin ""(3pi)/(n))= (1)/(sin""(2pi)/(n))`
or `" "(sin""(3pi)/(n)- sin""(pi)/(n))/(sin ""(pi)/(n)sin ""(3pi)/(n)) = (1)/( sin ""(2pi)/(n))`
or `((2sin""(pi)/(n) cos""(2pi)/(n)) sin""(2pi)/(n))/(sin ""(pi)/(n)sin ""(3pi)/(n)) =1`
or `sin ""(4pi)/(n) = sin "(3pi)/(n)`
`rArr (4pi)/(n) + (3pi)/(n) =pi`
`rArr n =7`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise JEE Main Previous Year|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

For what integral value of n if 3 pi is the period of the function cos(n x)sin((5x)/n) ?

The general values of theta satisfying the equation 2sin^2theta-3sintheta-2=0 is (n in Z)dot npi+(-1)^npi/6 (b) npi+(-1)^npi/2 npi+(-1)^n(5pi)/6 (d) npi+(-1)^n(7pi)/6

Which of the following set of values of x satisfies the equation 2^(2sin^2x-3sinx+1)+2^(2-2sin^2x+3sinx)=9? (a) x=npi+-pi/6,n in I (b) x=npi+-pi/3, n in I (c) x=npi,n in I (d) x=2npi+pi/2,n in I

Value of expression sin(pi/9)+sin((2pi)/9)+sin((3pi)/9)+...+sin((17pi)/9)=

If n is positive integer prove that ((1+sintheta+icostheta)/(1+sintheta-icostheta))^(n)=cosn((pi)/(2)-theta)+isinn((pi)/(2)-theta) .

Evaluate lim_(ntooo)ncos((pi)/(4n))sin((pi)/(4n)).

int_(-(pi)/(2))^((pi)/(2))(sin^3xdx)/(1+cosx)= .

If Aa n dB are acute positive angles satisfying the equations 3sin^2A+2sin^2B=1 and 3sin2A-2sin2B=0, then A+2B is equal to (a) pi (b) pi/2 (c) pi/4 (d) pi/6