Home
Class 12
MATHS
Determine the smallest positive value of...

Determine the smallest positive value of `x` which satisfy the equation `sqrt(1+sin2x)-sqrt(2)cos3x=0`

Text Solution

Verified by Experts

The correct Answer is:
`pi/16`

`sqrt(1 + sin 2x) - sqrt2 cos 3x = 0`
or `sqrt(1 + sin 2x) = sqrt2 cos 3x`
or `1 + sin 2x = 2 cos^(2) 3x`
`1 + sin 2x = 1 + cos 6x`
or `cos ((pi)/(2) - 2x) = cos 6x`
or `(pi)/(2) - 2x = 2n pi -+ 6x`
`:. X = (npi)/(2) - (pi)/(8) or x = (npi)/(4) + (pi)/(16)`
We get smallest value when `n = 0 " then " x = pi//16`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.4|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.5|5 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation x=sqrt(2+sqrt(2-sqrt(2+x))) is

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

Find the smallest positive root of the equation sqrt(sin(1-x))=sqrt(cos"x")

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

Sum of the valus of x satisfying the equation sqrt(2x+sqrt(2x+4))=4 is ______.

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

The value of x in ( 0, pi/2) satisfying the equation sin x cos x= 1/4 is

Integrate the functions sqrt(sin2x)cos2x

Find the value of x which satisfy equation 2 tan^(-1) 2x = sin^(-1).(4x)/(1 + 4x^(2))

Solve the equation sqrt3cos x + sin x = sqrt2 .