Home
Class 12
MATHS
Solve cos x + cos 2x+...+ cos (nx) =n, n...

Solve `cos x + cos 2x+...+ cos (nx) =n, n in N`.

Text Solution

Verified by Experts

The correct Answer is:
`x=0`

We have `cos x + cos 2x +...+ cos (nx) =n`
Now, `cosx+cos 2x+...+ cos (nx) le n`
So, `cos x = cos 2x = ... = cos nx=1`
`:. x=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.8|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.9|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.6|4 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve sin 2x=4 cos x .

Solve cos x = 1/2.

cos 3x + cos x - cos 2x =0

Solve sin x+cos x=1 +sin x cos x

Solve cos x +sinx =cos 2x+sin2x

Solve 2 sin^(3) x=cos x .

Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

Prove that cos A cos 2A cos 2^(2) A cos 2^(3)A....cos 2^(n-1) A=(sin 2^(n) A)/(2^(n) sin A)

Solve 2 sin^(2) x-5 sin x cos x -8 cos^(2) x=-2 .