Home
Class 12
MATHS
Solve : 2sin(3x+(pi)/(4))=sqrt(1+8sin2x....

Solve : `2sin(3x+(pi)/(4))=sqrt(1+8sin2x.cos^(2)2x),x in (0,2pi)`

Text Solution

Verified by Experts

The correct Answer is:
`x=(pi)/(12),(17pi)/(12)`

`2sin(3x+(pi)/(4))=sqrt(1+8sin 2x.cos^(2)2x)`
`rArr 2((sin3x + cos 3x)/(sqrt(2)))=sqrt(1+8 sin 2x cos 2x cos 2x)`
`rArr sqrt(2)(sin 3x + cos 3x)^(2)=1+2(sin 6x + sin 2x)`
`rArr 2(1+sin 6x)=1+2 sin 6x + 2 sin 2x`
`rArr 2sin 2x=1`
`rArr sin 2x = 1//2 = sin pi//6`
or `2x=n//pi+(-1)^(n)pi//6, n in Z`
or `x=(n pi)/(2)+(-1)^(n)(pi)/(12), n in Z`
`therefore x=(6n+(-1)^(n))(pi)/(pi)/(12)`
`therefore x=(pi)/(12),(5pi)/(12),(13pi)/(12),(17pi)/(12)`
But for `x=(5pi)/(12)` and `(13pi)/(12), sin(3x+(pi)/(4))lt 0`
`therefore x =(pi)/(12), (17pi)/(12)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))dx,x in(0,(pi)/(2)) is equal to

Evaluate int_(0)^((pi)/(2))(3sin^3x+4cos^4x)dx .

Solve 2 sin^(2) x-5 sin x cos x -8 cos^(2) x=-2 .

Evaluate int_(0)^(pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

Solve cos ( sin^(-1)((x)/(sqrt(1+x^2))))= sin { cot^(-1) (3/4)}

If 2 sin^(2) ((pi//2) cos^(2) x)=1-cos (pi sin 2x), x ne (2n + 1) pi//2, n in I , then cos 2x is equal to

Solve sinx+sinsqrt(((pi/8-cos2x)^2+sin^2 2x))=0

Prove that cos ((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt2 sin x

Evaluate int_(0)^((pi)/(2))(sin^3x)/(sin^3 x+cos^3 x)dx .