Home
Class 12
MATHS
The number of solutions of the equation ...

The number of solutions of the equation `16(sin^(5)x +cos^(5)x)=11(sin x + cos x)` in the interval `[0,2pi]` is

A

6

B

7

C

8

D

9

Text Solution

Verified by Experts

The correct Answer is:
A

`16 (sin^(5)x + cos^(5)x)-11(sin x + cos x) = 0`
`rArr (sin x + cos x) {16(sin^(4)x-sin^(3)x cos x + sin^(2)x cos^(2)x - sin x cos^(3) x + cos^(4) x)-11}=0`
`rArr (sin x + cos x){16(1-sin^()x cos^(2)x - sin x sin x cos x)-11}=0`
`rArr (sin x + cos x)(4 sin x cos x -1)(4 sin x cos x + 5) = 0`
As `4 sin x cos x + 5 ne 0` ,we have
`sin x + cos x = 0, 4 sin x cos x - 1 =0`
`rArr tan x = -1, sin 2x=(1)/(2)`
`rArr pi//12, 5pi//2, 9pi//12, 17pi//12, 21 pi//12`.
There are 6 solutions on `[0, 2pi]`
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation sin^3xcosx+sin^2xcos^2x+sinxcos^3x=1 in the interval [0,2pi] is/are 0 (b) 2 (c) 3 (d) infinite

The total number of solution of the equation sin^4 x +cos^4 x = sin x cos x in [0,2pi] is :

Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .

The number of solution (s) of the equation sqrt2+cos 2 x=(sin x+cos x) in [-pi/2, pi]

Find the number of real solution of the equation (cos x)^(5)+(sin x)^(3)=1 in the interval [0, 2pi]

Number of solution(s) of the equation (sinx)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27x)=0 in the interval (0,pi/4) is____________

The number of solutions of the equation cos6x+tan^2x+cos(6x)tan^2x=1 in the interval [0,2pi] is (a) 4 (b) 5 (c) 6 (d) 7

The number of solutions of the equation sin x . Sin 2x. Sin 3x=1 in [0,2pi] is

the number of solution of the equation tanx + sec x = 2 cos x and cos x ne 0 lying in the interval ( 0 , 2 pi ) is

The number of solutions of the equation cos^(2)((pi)/(3)cos x - (8pi)/(3))=1 in the interval [0,10pi] is