Home
Class 12
MATHS
If the equation (4cos^(2)x -2 sinx -3) s...

If the equation `(4cos^(2)x -2 sinx -3`) sin x, then x is equal to `(n in Z)`

A

`n pi+((3pi)/(10))`

B

`n pi+(-1)^(n+1)((3pi)/(10))`

C

`n pi+((3pi)/(10))`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

We have `[4 cos^(2) x-2 sin x-3] sin x =0`
`rArr sin x = 0` or `4(1-sin^(2)x)-2 sin x -3 =0`
`rArr sin x =0` or `4sin^(2) x+2 sin x -1=0`
`rArr sin x=0` or `sin. X = (sqrt(5)-1)/(4),-(1+sqrt(5))/(4)`
`rArr x = n pi` or `x = n pi + (-1)^(n)(pi)/(10)`
or `x = n pi + (-1)^(n+1)((3pi)/(10)), n in Z`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let int cos^(3)xdx = m sin x +(sin^(3)x)/n+c , then n+2m is equal to

The number of distinct real roots of the equation sin^(3)x +sin^(2)x sin x-sin x- sin 2x-2cos x=0 belonging to the interval (-(pi)/(2),(pi)/(2))

Solve the equation sqrt3cos x + sin x = sqrt2 .

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

Find all the solution of 4cos^2xsinx-2sin^2x=3sinx

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(sin4x) in [0,4pi] equals 0 (b) 2 (c) 4 (d) 6

Solve the equation sin^4x+cos^4x-2sin^2x+(3sin^2 2x)/4=0

The value of int(cos^(3)x)/(sin^(2)x+sinx)dx is equal to

Solve the equation (sqrt(3))/2sinx-cosx=cos^2x