Home
Class 12
MATHS
If alpha < beta < gamma and sin gamma co...

If `alpha < beta < gamma` and `sin gamma cos alpha=1,` where `alpha,gamma in[pi,2 pi],` then the least integral value of `f(x) = | x - alpha| + | x - beta| + |x - gamma|` is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
C

`sin gamma.cos alpha =1 alpha, gamma in [pi, 2pi]`
`therefore sin gamma = cos alpha =1`
`rArr gamma = pi//2, alpha = 2pi` (rejected) `(as alpha lt beta lt gamma)`
Other possibility is `sin gamma = cos alpha =-1 rArr gamma = 3 pi//2, alpha = pi`
`f(x)|_(min)=f(beta)=beta-alpha+0+gamma-beta`
`=gamma -alpha`
`=(3pi)/(2)-pi=(pi)/(2)`
`f(x)ge pi//2 rArr` least integral value of f(x) is 2.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

If A=[(cos alpha, -sin alpha),(sin alpha, cos alpha)], and A+A'=I , then the value of alpha is

A value of alpha such that int_(alpha)^(alpha+1) (dx)/((x+alpha)(x+alpha+1))="loge"((9)/(8)) is

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If F(alpha)=[[cos alpha,0,sin alpha],[0,1,0],[-sin alpha,0,cos alpha]] , show that [F(alpha]^(-1)=F(-alpha) .

Which of the following values of alpha satisfying the equation |(1+alpha)^2(1+2alpha)^2(1+3alpha)^2(2+alpha)^2(2+2alpha)^2(2+3alpha)^2(3+alpha)^2(3+2alpha)^2(3+3alpha)^2|=-648alpha? -4 b. 9 c. -9 d. 4

In alpha radiation charge of each alpha particle is .........

alpha -rays consist of alpha -particles, which are _______ nuclei.

Which of the following is independent of alpha in the hyperbola (0 < alpha < pi/2)x^2/cos^2 alpha-y^2/sin^2alpha=1