Home
Class 12
MATHS
Find the general solution of the trignom...

Find the general solution of the trignometric equation `3^(1/2+log_(3)(cosx+sinx))-2^(log_(2)(cosx-sinx))=sqrt(2)`

A

`2n pi+(5pi)/(4)`

B

`n pi-(pi)/(4)`

C

`n pi+(-1)^(n)(pi)/(4)`

D

`2n pi+(pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A

`because A.M. ge G.M. therefore (2^(sin x)+2^(cos x))/(2)ge sqrt(2^(sin x).2^(cos x))`
`therefore 2^(sin x)+2^(cos x)ge 2. sqrt(2^(sin x + cos x))`
But minimum value of cos x + sin x is `- sqrt(2)`
`thereofre 2^(sin x)+2^(cos x)ge 2. sqrt(2^(-sqrt(2)))=2^(1-(1)/(sqrt(2)))`
But the given equation is `2^(sin x)+2^(cos x)=2^(1-(1)/(sqrt(2)))`, which can hold only if `2^(sin x)=2^(cos x)=2^(-(1)/(sqrt(2)))`
`rArr x = 2n pi + (5pi)/(4), n in Z`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the squares of all the real solution of the equation 2log_((2+sqrt3)) (sqrt(x^2+1)+x)+log_((2-sqrt3)) (sqrt(x^2+1)-x)=3

Find the integrals of the functions (sinx)/(2+cosx)

Answer the equation: inttan^(-1)((cosx-sinx)/(cosx+sinx))dx

Find the number of solution of theta in [0,2pi] satisfying the equation ((log)_(sqrt(3))tantheta(sqrt((log)_(tantheta)3+(log)_(sqrt(3))3sqrt(3))=-1

Find the derivative of (cosx)/(1+sinx)

solve the equation for x , 5^(1/2)+5^(1/2 + log_5 sinx) = 15^(1/2 + log_15 cosx)

Find the integrals of the functions (cos2x)/((cosx+sinx)^(3))

Find the derivatives of the following : tan^(-1)((cosx+sinx)/(cosx-sinx))

Find the integrals of the functions (cos2x)/((cosx+sinx)^(2))

Integrate the functions (2cosx-3sinx)/(6cosx+4sinx)