Home
Class 12
MATHS
The number of ordered 5-tuple (u, v, w, ...

The number of ordered 5-tuple `(u, v, w, x, y)` where `(u, v, w, x, y in [1, 11])` which satisfy the inequality `2^(sin^2u+3cos^2v).3^(sin^2w+cos^2x).5^(cos^2y)>=720` is

A

216

B

246

C

432

D

432

Text Solution

Verified by Experts

The correct Answer is:
C

Given `2^(sin^(2)u+3cos^(2)v).3^(sin^(2)w + cos^(2)x).5^(cos^(2)y)ge 2^(4).3^(2).5^(1)`
The equality holds when `sin^(2)u=sin^(2)w=cos^(2)v=cos^(2)x`
`=cos^(2)y=1`
`therefore u,w in {(pi)/(2),(3pi)/(2),(5pi)/(2),(7pi)/(2)}` and `x, y, v in {pi, 2pi, 3pi}`
Number of ordered 5-tuples `=4^(2)xx3^(3)=432`
Promotional Banner

Similar Questions

Explore conceptually related problems

int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx

The number of ordered pair (x, y) satisfying the equation sin^(2) (x+y)+cos^(2) (x-y)=1 which lie on the circle x^(2)+y^(2)=pi^(2) is _________.

If w(x,y) = x^(3) - 3xy + 2y^(2), x , y in R , find the linear approximation for w at (1,-1).

If w = u^(2)e ^(v) where u = x/y, v = y log x find (delw)/(delx)

Let x, y, in R satisfy the condition such that sin x sin y + 3 cos y +4 sin y cos x=sqrt(26) . The value of tan^(2)x + cot^(2)y is equal to

Differentiative sin^(2) x w.r.t. e^(cos x) .