Home
Class 12
MATHS
Let 'P' be an interior point of Delta AB...

Let 'P' be an interior point of `Delta ABC`. If `angle A=45^(@), angle B=60^(@)` and `angle C=75^(@)`. If X=area of `Delta PBC,Y=` area of `Delta PAC` and Z = area of `Delta PAB`, then which of the following ratios is/are true ?

A

If P is the centroid, then X : Y : Z is 1 : 1 : 1

B

If P is the incentre, then X : Y : Z is `2 :sqrt(6) :(sqrt(3)+1)`

C

If P the orthocentre, then X : Y : Z is `1 : sqrt(3) :(2+sqrt(3))`

D

If P is the circumcentre, then X : Y : Z is `2 : sqrt(3) :1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

(a)
Using properties of median, we have
`Delta PBC = Delta PCA = Delta PAB`
`therefore Delta PBC : Delta PCA : Delta PAB = 1:1:1`
(b)
`Delta PBC : Delta PCA : Delta PAB`
`=(1)/(2)ar : (1)/(2)br : (1)/(2)cr`
`= a:b:c`
`= sin 45^(@): sin 60^(@): sin 75^(@)=2 : sqrt(6):(sqrt(3)+1)`
(c )
`Delta PBC : Delta PCA : Delta PAB`
`=(1)/(2)a(2R cos B cos C) : (1)/(2)b(2 R cos C cos A) : (1)/(2)c(2R cos A cos B)`
= sin A cos B cos C : sin B cos C cos A : sin C cos A cos B
`= tan 45^(@) : tan 60^(@) : tan 75^(@)`
`= 1: sqrt(3):(2+sqrt(3))`
(d)
`Delta PBC : Delta PCA : Delta PAB`
`=(1)/(2)R^(2)sin 2A : (1)/(2)R^(2)sin 2B(1)/(2)R^(2)sin 2C`
`= sin 2A : sin 2B : sin 2C`
`= sin 90^(@) : sin 120^(@) : sin 150^(@)`
`= 2 : sqrt(3):1`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|42 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Comprehension Type|6 Videos
  • SETS AND RELATIONS

    CENGAGE|Exercise Question Bank|3 Videos
  • STATISTICS

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Find the angle A in triangle ABC, if angle B=60^∘ and angle c=70^∘

In Delta ABC, angle B = 90^(@), angle C = 30^(@), AB = 6 cm then AC =….

In any triangle ABC, if 2Delta a-b^(2)c=c^(3) , (where Delta is the area of triangle), then which of the following is possible ?

In Delta XYZ, angle y = 90^(@), angle Z = a^(@), angle X = (a + 30)^(@) "find" angle x

In Delta XYZ, angle y = 90^(@), angle Z = a^(@), angle x = (a + 30 ^(@)). If XZ = 24 "find" XY "and" YZ .

If Delta ABC is an isosceles triangle with angle C=90^(@) and AC=5 cm, then AB is

If Delta = a^2 - ( b-c)^2 where Delta is the area of triangle ABC then tan A is equal to

In a triangle ABC if angle ABC=60^(@) , then ((AB-BC+CA)/(r ))^(2)=

Given two points A and B. If area of triangle ABC is constant then locus of point C in space is

In Delta ABC " and " Delta DEF, angle A = angle E and angle B = angle F . Then AB : AC is ……..