Home
Class 12
MATHS
If vec a , vec b , vec ca n d vec d are...

If ` vec a , vec b , vec ca n d vec d` are four vectors in three-dimensional space with the same initial point and such that `3 vec a+2 vec b+ vec c-2 vec d=0` , show that terminals `A ,B ,Ca n d D` of these vectors are coplanar. Find the point at which `A Ca n dB D` meet. Find the ratio in which `P` divides `A Ca n dB Ddot`

Text Solution

Verified by Experts

Since `3veca-2vecb+vecc-2vecd=vec0`
`" "3veca+vecc= 2vecb+ 2vecd`
`rArr" "(3veca+vecc)/(4)= (2vecb+ 2vecd)/(4) or (3vec a+2vecd)/(3+1)= (vecb+vecd)/(2)`
Therefore, P.V. of the point dividing AC in the ratio `1 : 3` is the same as the P.V. of midpoint of BD.
So AC and BD intersect at P, whose P.V. is `(3veca+vecc)/(4) or (vecb+vecd)/(2)`. Point P divides AC in the ratio `3 : 1` and BD in the ratio `1 : 1`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Subjective)|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.1|20 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is a. 0 b. 1 c. -sqrt(3) d. sqrt(3)

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

If vec a , vec b , vec c ,a n d vec d are four non-coplanar unit vector such that vec d make equal angles with all the three vectors vec a , vec ba n d vec c , then prove that [ vec d vec a vec b]=[ vec d vec c vec b]=[ vec d vec c vec a]dot

If vec aa n d vec b are two vectors of magnitude 1 inclined at 120^0 , then find the angle between vec ba n d vec b- vec adot

If vec a , vec b ,a n d vec c are non-zero vectors such that vec adot vec b= vec adot vec c , then find the geometrical relation between the vectors.

vec a , vec b ,a n d vec c are three vectors of equal magnitude. The angel between each pair of vectors is pi//3 such that | vec a+ vec b+ vec c|=6. Then | vec a| is equal to 2 b. -1 c. 1 d. sqrt(6)//3

If vec aa n d vec b are two given vectors and k is any scalar, then find the vector vec r satisfying vec rxx vec a+k vec r= vec bdot

If vec a , a n d vec b are unit vectors , then find the greatest value of | vec a+ vec b|+| vec a- vec b|dot