Home
Class 12
MATHS
Show that the vectors 2veca-vecb+3vecc, ...

Show that the vectors `2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc` are non-coplanar vectors (where `veca, vecb, vecc` are non-coplanar vectors).

Text Solution

Verified by Experts

Consider `2veca-vecb+3vecc=x (veca+vecb-2vecc) + y(veca+vecb-3vecc)`
or `" "2veca-vecb+3vecc= (x+y)veca+ (x+y)vecb+ (-2x-3y)vecc`
`" "x+y=2" "` (i)
`" "x+y=-1" "` (ii)
`" "-2x-3y=3" "` (iii)
Multiplying (i) by 3 and adding it to (iii), we get
`x=9`
From (i), `9+y=2 or y =-7`
Now putting `x=9 and y=-7` in (ii), we get
`" "9-7=-1`
or `2=-1`, which is not true.
Therefore, the given vectors are not coplanar.
Alternate method :
We have determinant of co-efficients as
`" "|{:(2,,-1,,3),(1,,1,,-2),(1,,1,,-3):}| = -3 ne 0`
Hence, vectors are non-coplanar.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Subjective)|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.1|20 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

The vectors veca-vecb,vecb-vecc,vecc-veca are

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

Shown that the points with position vectors veca-2vecb+3vecc,-2veca+3vecb+2vecc and -8veca+13vecb are collinear.

For non zero vectors veca,vecb, vecc |(vecaxxvecb).vecc|=|veca||vecb||vecc| holds iff

If veca and vecb are parallel vector, then [(veca,vecb,vecc)] is equal to

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If vecP = (vecbxxvecc)/([vecavecbvecc]),vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is