Home
Class 12
MATHS
If veca, vecb and vecc are three non-zer...

If `veca, vecb and vecc` are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : `veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc`.

Text Solution

Verified by Experts

Any vector `vecr` can be uniquely expressed as a linear combinatioin of three non-coplanar vectors.
Let us choose that
`" "7veca -11 vecb + 15 vecc= x(veca-2vecb+ 3vecc) + y (2veca-3vecb+4vecc)+ z(3veca-4vecb+5vecc)`
Comparing the coefficients of `veca, vecb and vecc` on both sides, we get
`x+2y+3z=7, -2x-3y-4z=-11, 3x+4y+ 5z=15`
Eliminating x and then solving for `y and z`, we get x=1, y=3, z=0`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Subjective)|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.1|20 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

The vectors veca-vecb,vecb-vecc,vecc-veca are

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

For non zero vectors veca,vecb, vecc |(vecaxxvecb).vecc|=|veca||vecb||vecc| holds iff

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

Let veca,vecb,vecc be three linearly independent vectors, then ([veca+2vecb-vecc 2veca+vecb+vecc4veca-vecb+5vecc])/([vecavecbvecc])

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then the vectors veca+2vecb+3vecc, lamdavecb+4cvec and (2lamda-1)vecc are non coplanar for

If veca,vecb and vecc are three unit vectors satisfying veca-sqrt(3)vecb+vecc=vec0 then find the angle between veca and vecc ?