Home
Class 12
MATHS
In a four-dimensional space where uni...

In a four-dimensional space where unit vectors along the axes are ` hat i , hat j , hat ka n d hat l ,a n d vec a_1, vec a_2, vec a_3, vec a_4` are four non-zero vectors such that no vector can be expressed as a linear combination of others and `(lambda-1)( vec a_1- vec a_2)+mu( vec a_2+ vec a_3)+gamma( vec a_3+ vec a_4-2 vec a_2)+ vec a_3+delta vec a_4=0,` then a. `lambda=1` b. `mu=-2//3` c. `gamma=2//3` d. `delta=1//3`

A

`lamda =1`

B

`mu = -2//3`

C

`gamma = 2//3`

D

`delta = 1//3`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`(lamda -1) (veca_1 - veca_2) + mu(veca_2 + veca_3)+ gamma (veca_3 + veca_4- 2veca_2) + veca_3 + deltaveca_4 = vec0`
i.e., `(lamda -1) veca_1 + (1-lamda +mu- 2gamma)veca_2 + (mu + gamma +1)veca_3 + ( gamma + delta) veca_4=vec0`
Since `veca_1, veca_2, veca_3 and veca_4` are linearly inependent, we have
`lamda-1 =0, 1-lamda + mu - 2gamma =0, mu+gamma +1=0 and gamma +delta =0`
i.e., `lamda =1, mu=2gamma, mu +gamma+1 =0, gamma +delta =0`
Hence, `lamda =1, mu = - (2)/(3), gamma = - (1)/(3), delta = (1)/(3)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Reasoning Questions)|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Comprehension)|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

Find the unit vector along vec a - vec b where veca = hat i + 3 hat j - hat k and vec b = 3 hat i + 2 hat j + hat k .

If the vectors vec c , vec a=x hat i+y hat j+z hat ka n d vec b= hat j are such that vec a , vec ca n d vec b form a right-handed system, then find vec cdot

If vec a = hat i + 2 hat j - 3 hat k and vec b = 3 hat i - hat j + 2 hat k , then vec a + vec b and vec a - vec b are

Prove that the vectors vec a= hat i+ 2 hat j +3 hat k and vec b=2 hat i- hat j are perpendicular.

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot

If vec rdot hat i= vec rdot hat j= vec rdot hat ka n d| vec r|=3, then find the vector vec rdot

Consider the vectors vec a = 2 hat i + 2 hat j - 5 hat k and vec b= -hat i + 7 hat k (a).Find vec a + vec b . (b) Find a unit vector in the direction of vec a + vec b .

If vec a = hat i - hat j and vec b = hat j + hat k then |vec a xx vec b|^(2) + |vec a. vecb|^(2) is equal to

What is the unit vector parallel to vec a=3 hat i+4 hat j-2 hat k ? What vector should be added to vec a so that the resultant is the unit vector hat i ?

Given three vectors vec a=6 hat i-3 hat j , vec b=2 hat i-6 hat ja n d vec c=-2 hat i+21 hat j such that vecalpha= vec a+ vec b+ vec c Then the resolution of the vector vecalpha into components with respect to vec aa n d vec b is given by a. 3 vec a-2 vec b b. 3 vec b-2 vec a c. 2 vec a-3 vec b d. vec a-2 vec b