Home
Class 12
MATHS
Statement 1: Let vec a , vec b , vec ca...

Statement 1: Let ` vec a , vec b , vec ca n d vec d` be the position vectors of four points `A ,B ,Ca n dD` and `3 vec a-2 vec b+5 vec c-6 vec d=0.` Then points `A ,B ,C ,a n dD` are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector `( vec P Q , vec P Ra n d vec P S)` are coplanar. Then ` vec P Q=lambda vec P R+mu vec P S ,w h e r elambdaa n dmu` are scalars.

A

Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B

Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.

C

Statement 1 is true and Statement 2 is false.

D

Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
A

` 3 veca - 2vecb + 5vecc - 6 vecd = ( 2veca - 2vecb)+ (-5vec a+ 5 vecc) + ( 6veca - 6 vecd) `
`" " = - 2 vec(AB) + 5vec(AC) - 6 vec(AD) - 6 vec(AD) = vec0`
Therefore, `vec(AB) , vec(AC) and vec(AD)` are linearly dependent.
Hence by Statement 2, Statement 1 is true.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Comprehension)|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise LINKED COMPREHENSION TYPE|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Multiple)|13 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors vec a, vec b and vec c are coplanar if vec a + vec b, vec b + vec c, vec c+ vec a are coplanar.

Let vec a , vec b ,a n d vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a]=[ vec a vec b vec c]^2dot

If vec a , vec ba n d vec c are non-coplanar vectors, prove that the four points 2 vec a+3 vec b- vec c , vec a-2 vec b+3 vec c ,3 vec a+ 4 vec b-2 vec ca n d vec a-6 vec b+6 vec c are coplanar.

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

Statement 1: if three points P ,Qa n dR have position vectors vec a , vec b ,a n d vec c , respectively, and 2 vec a+3 vec b-5 vec c=0, then the points P ,Q ,a n dR must be collinear. Statement 2: If for three points A ,B ,a n dC , vec A B=lambda vec A C , then points A ,B ,a n dC must be collinear.

If vec a , vec b and vec c are non-coplanar vectors, prove that vectors 3vec a-7 vec b-4 vec c ,3 vec a -2 vec b+ vec c and vec a + vec b +2 vec c are coplanar.

If vec a, vec b, vec c, vec d respectively are the position vectors representing the vertices A, B, C, D of a parallelogram then write vec d in terms of vec a, vec b and vec c

If vec a , vec b , vec ca n d vec d are four vectors in three-dimensional space with the same initial point and such that 3 vec a-2 vec b+ vec c-2 vec d=0 , show that terminals A ,B ,Ca n d D of these vectors are coplanar. Find the point at which A Ca n dB D meet. Find the ratio in which P divides A Ca n dB Ddot

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec ca n d vec a is not a zero vector. Show that vec b= vec cdot

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot