Home
Class 12
MATHS
Consider the regular hexagon ABCDEF with...

Consider the regular hexagon ABCDEF with centre at O (origin).
Five forces `vec(AB), vec(AC), vec(AD), vec(AE), vec(AF)` act at the vertex A of a regular hexagon ABCDEF. Then their resultant is

A

` 3 vec(AO)`

B

`2 vec(AO)`

C

`4 vec(AO)`

D

`6 vec(AO)`

Text Solution

Verified by Experts

The correct Answer is:
D

Consider the regular hexagon ABCDEF with centre at O (origin)

`vec(AD) + vec(EB) + vec(FC) = 2 vec(AO) + 2 vec(OB) + 2 vec(OC)`
`" " = 2 ( vec(AO) + vec(OB) ) + 2 vec(OC)`
`" " = 2 vec(AB) + 2 vec(AB) `
`" " ( because vec(OC) = vec(AB))`
`" " = 4 vec(AB)`
`vecR = vec(AB) + vec(AC) + vec(AD) + vec(AE) + vec(AF)`
`= vec(ED) + vec(AC) + vec(AD) + vec(AE) +vec(CD)`
`( because vec(AB) = vec(ED) and vec(AF)= vec(CD))`
`= ( vec(AC) + vec(CD)) + ( vec(AE) + vec(ED)) + vec(AD)`
`= vec(AD) + vec(AD) + vec(AD) = 3 vec(AD) = 6 vec(AO)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise LINKED COMPREHENSION TYPE|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise MATRIX-MATCH TYPE|3 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Reasoning Questions)|11 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

ABCDEF is a regular hexagon. Find the vector vec AB + vec AC + vec AD + vec AE + vec AF in terms of the vector vec AD

If ABCDE is a pentagon then prove that vec(AB)+vec(AE)+vec(BC)+vec(DC)+vec(ED)+vec(AC)=3vec(AC)

Consider the triangle ABC with vertices A(1, 1, 1) B(1, 2, 3) and C(2, 3, 1). (a) Find vec(AB) and vec(AC) Find vec (AB) xx vec (AC) (c) Hence find the area of the triangle ABC.

In a regular hexagon ABCDEF if vec(AB) and vec(BC) are represented by vec(a) and vec(b) respectively then vec(EF)= .......... .

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

ABCDE is a pentagon .prove that the resultant of force vec A B , vec A E , vec B C , vec D C , vec E D and vec A C ,is 3 vec A C .

If ABCD is a parallelogram then vec(AB) + vec(AD) + vec(CB) + vec(CD) = …………………… .

If D is the midpoint of the side BC of a triangle ABC, prove that vec(AB)+vec(AC)=2vec(AD)

Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector veca . The vector of the faces containing vertices A, B , C and A, B, D are vecb and vecc , respectively , i.e. vec(AB) xx vec(AC) and vec(AD) xx vec(AB) = vecc the projection of each edge AB and AC on diagonal vector veca is |veca|/3 vector vec(AD) is