Home
Class 12
MATHS
In a parallelogram OABC, vectors veca, v...

In a parallelogram OABC, vectors `veca, vecb, vecc` are, respectively, tehe position vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side BC which divides it in the ratio `2 : 1`. Also, the line segment AE intersects the line bisecting the angle `angle AOC` internally at point P. If CP when extended meets AB in point F, then
The position vector of point P is

A

`(|veca||vecc|)/(3 |vecc|+ 2|veca|)((veca)/(|veca|) + (vecc)/(|vecc|))`

B

`(3|veca||vecc|)/(3|vecc|+ 2|veca|)((veca)/(|veca|) + (vecc)/(|vecc|))`

C

`(2|veca||vecc|)/(3|vecc|+ 2|veca|) ((veca)/(|veca|) + (vecc)/(|vecc|))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B


Let the position vector of A and C be `veca and vecc` respectively. Therefore,
Position vector of B `= vecb = vec a + vec c" " `(i)
Also Position vector of E `=( vecb + 2vecc)/( 3) = ( veca + 3vecc)/( 3)" " ` (ii)
Now point P lies on angle bisector of `angle AOC`. Thus,
Position vector of point P `= lamda((veca)/(|veca|) + ( vecb)/(|vecb|))" "` (iii)
Also let P divides EA in ration `mu : 1`. Therefore,
Position vector of P
`" "=(mu veca + (veca + 3 vecc)/(3)) /(mu+1) = ((3 mu +1) veca + 3 vecc)/( 3 ( mu +1))" "` (iv)
Comparing (iii) and (iv), we get
`lamda ((veca )/(|veca|) + (vecc)/( |vecc|) ) = (( 3mu + 1) veca + 3vecc)/( 3(mu+1))`
`rArr (lamda ) /(|veca|) = ( 3mu +1)/( 3(mu +1)) and(lamda ) /(|vecc|) = (1)/( mu+1)`
`rArr (3|vecc|- |veca|)/(3|veca|)=mu`
`rArr (lamda)/(|vecc|) = (1)/((3|vecc| - |veca|)/(3|veca|)+1)`
`rArr lamda =( 3|veca||vecc|)/(3|vecc|+ 2|veca|)`
Hence, positive vector of P is `(3 |veca ||vecc|)/(3|vecc|+ 2|veca|)((veca)/(|veca|) + (vecc)/(|vecc|))`
Let F divides AB in ratio `t : 1`, then position vector of F is `(tvecb + veca)/(t+1)`
Now points C, P, F are collinear. Then,
`vec(CF) = mvec(CP)`
`rArr =(t(veca+ vecc))/(t+1) - vecc= m{(3|veca||vecc|)/(3|vecc|+2|veca|)((veca)/(|veca|)+ (vecc)/(|vecc|))- vecc}`
Comparing coefficients we get
`(t)/(t+1) = m(3|vecc|)/(3|vecc| + 2|veca|) and (-1)/(t+1) = m (|veca|- 3|vecc|)/( 3 |vecc| +2|veca|)`
`t = ( 3|vecc|)/( 3|vecc|-|veca|)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise LINKED COMPREHENSION TYPE|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise MATRIX-MATCH TYPE|3 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Reasoning Questions)|11 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos

Similar Questions

Explore conceptually related problems

In a parallelogram OABC, vectors veca, vecb, vecc are, respectively, tehe position vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side BC which divides it in the ratio 2 : 1 . Also, the line segment AE intersects the line bisecting the angle angle AOC internally at point P. If CP when extended meets AB in point F, then The ratio in which F divides AB is

The vectors veca-vecb,vecb-vecc,vecc-veca are

If veca,vecb,vecc are the position vectors of three collinear points, then which of the following is true?

Three points A,B, and C have position vectors -2veca+3vecb+5vecc, veca+2vecb+3vecc and 7veca-vecc with reference to an origin O. Answer the following questions? B divided AC in ratio

If veca,vecb are the position vectors A and B then which one of the following points whose position vector lies on AB, is

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

If veca, vecb, vecc, vecd are the position vectors of points A, B, C and D , respectively referred to the same origin O such that no three of these points are collinear and veca+vecc=vecb+vecd , then prove that quadrilateral ABCD is a parallelogram.